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Multiple-scattering glint integrator Chermain et al. [CCM18] Yan et al. [YHMR16]

Figure 1: Glittery orb illuminated by an environment map using 1,024 spp. The micro-surface is modeled by a specular normal map with high
RMS roughness (σ = 1). Previous methods based on classic normal mapping and single-scattering BRDF evaluations darken the appearance
and create black holes (insets and white furnace tests). Importance sampling is suboptimal and causes fireflies. Our new multiple-scattering
glint integrator tackles these issues. It produces renderings with no artifacts, and almost passes the white furnace test, for an extra 36%
rendering time for this scene.

Abstract
Rendering materials such as metallic paints, scratched metals and rough plastics requires glint integrators that can capture
all micro-specular highlights falling into a pixel footprint, faithfully replicating surface appearance. Specular normal maps
can be used to represent a wide range of arbitrary micro-structures. The use of normal maps comes with important drawbacks
though: the appearance is dark overall due to back-facing normals and importance sampling is suboptimal, especially when the
micro-surface is very rough. We propose a new glint integrator relying on a multiple-scattering patch-based BRDF addressing
these issues. To do so, our method uses a modified version of microfacet-based normal mapping [SHHD17] designed for
glint rendering, leveraging symmetric microfacets. To model multiple-scattering, we re-introduce the lost energy caused by a
perfectly specular, single-scattering formulation instead of using expensive random walks. This reflectance model is the basis of
our patch-based BRDF, enabling robust sampling and artifact-free rendering with a natural appearance. Additional calculation
costs amount to about 40% in the worst cases compared to previous methods [YHMR16, CCM18].

CCS Concepts
• Computing methodologies → Rendering; Reflectance modeling;
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1. Introduction

Glittery materials, metallic paints, rough, brushed and scratched
plastics and metals are surface types that are challenging to render
in computer graphics. These materials have tiny mirror-likes details
visible only under sharp and powerful lighting. A major feature of
these materials is the spatial coherence of their hundreds of high
frequency specular lobes, where small light or camera translations
reveal the micro-surface. Using smooth normal distribution func-
tions (NDF) to model material appearance is common for rendering
specular surfaces, because these functions integrate well with com-
mon, field-proven shading models and frameworks. They are how-
ever ineffective at representing real life surfaces having complex
micro-structures. Traditional surface filtering in computer graphics
uses low-pass filters to reduce calculation costs, restricting NDFs
to simple definitions, poorly replicating material appearance.

To capture the glints featured by specular surfaces, the re-
flectance model cannot use traditional Bidirectional Reflectance
Distribution Functions (BRDF) based on smooth NDFs. More so-
phisticated models have to be used, such as glint integrators. This
family of methods never simplify the micro-surface, and guarantees
the rendering of all the micro-details falling into a screen pixel. The
complexity of the material is fully taken into account and its related
appearance is meant to be faithfully reproduced.

A Recent Interest. Rendering of specular micro-structures has
received a growing interest in the last five years. The contribu-
tions of Jakob et al. [JHY∗14] and Yan et al. [YHJ∗14] have in-
spired many recent works exploring procedural materials [AK16,
ZK16,WWH18], primitive-based BRDF [RGB16] or normal map-
based glint integrators [YHMR16, CCM18, GGN18]. Each kind
of method has associated strengths and weaknesses. Some meth-
ods specialize into a particular type of micro-structure (scratches,
mirror-like flakes), sometimes achieving multiple-scattering effects
and proposing good sampling routines. Others are more versatile,
handling a large range of materials (glittery surfaces, brushed and
scratched metals), often at the expense of memory consumption
and rendering quality.

Remaining Issues. Most glint integrators based on normal maps
or procedural surfaces simulate one bounce of light on the micro-
surface. The rendered images produced with these integrators come
out unnaturally dark, especially when using very rough surfaces
(Figure 1, middle and right). A lot of surface normals are back-
facing when the viewing or lighting direction is grazing. These
unfortunate cases prevent light from being reflected. The second
issue is an inefficient sampling procedure, yielding high sample
weights, introducing isolated but nonetheless disturbing firefly arti-
facts (Figure 12). Current state-of-the art glint integrators randomly
pick a normal of the micro-surface without taking into account the
masking and interreflections that are inherent to the geometry of
the micro-surface. At very grazing angles, about half of the sam-
ples are wasted and high weights are used to compensate for these
losses.

Position of our Work. The aim of this paper is to address all these
issues. We choose to represent the micro-surface by a normal map,
for its versatility. Our representation is based on a dual normal

model, inspired by the work of Schüssler et al. [SHHD17]. A key
difference is that we use a symmetric dual, not a tangent one (verti-
cal), so as to not alter material roughness and related overall appear-
ance. We take into account multiple-scattering by re-introducing
the energy lost by a sole one-bounce BRDF formulation, a quan-
tity that we analytically derive. This lost energy quantity is ap-
proximated and compensated for by using an energy-compensation
BRDF, which is added to the single-scattering expression, eventu-
ally forming our final local BRDF. For importance sampling, we
sample the single-scattering BRDF and keep the sample only if it
is not shadowed or transmitted (Figure 5). Otherwise, we sample
the energy-compensation BRDF, to account for multi-scattering.

Our local BRDF is then used as part of a footprint or patch based
glint integrator. Our patch-BRDF is a discrete weighted sum of lo-
cal BRDF instances, and is energy conserving.

Our contributions in the field of glint rendering are the following:

• We propose the first multiple-scattering glint integrator based on
a specular normal map.
• The proposed patch-BRDF does not have the rendering-quality

related issues of the previous methods: black holes on the sur-
face, dark overall appearance and fireflies.
• The sampling procedure is optimal: no samples are wasted,

the probability density function (PDF) is analytic and sample
weights are one when the surface is non-absorptive.

Our formulation and BRDF compensation scheme is restricted to
specular surfaces. It is asymmetric and therefore limits the use of
our method to forward path tracing. The dual normal approach may
change the look of some materials in unwanted ways, even though
this has not been significant for the examples in the paper.

After a detailed review of the related works (Section 2), we
present our local multiple-scattering BRDF in Section 3. We use
this local model to build the patch-BRDF in Section 4, which fil-
ters the surface and guarantees the spatial coherence of the glints.
We evaluate our method and discuss the results in Section 5.

2. Related Work

Our work is related to three different areas of research in com-
puter graphics: glint integrators, microfacet-based normal mapping
and multiple-scattering BRDFs. We review here the most relevant
works in these areas.

2.1. Glint Integrators

Glint integrators can be seen as special types of BRDFs where spec-
ular micro-structures are rendered using either geometrical prim-
itives randomly placed on the surfaces or high definition normal
maps. Instead of relying on stochastic Monte Carlo sampling to es-
timate shading, glint integrators calculate all the radiance leaving a
ray footprint (pixel-bound for primary rays). The BRDF associated
with the footprint is usually referred to as a patch BRDF.

Stochastic surfaces. The first method making use of stochastic
specular micro-structures is the method of Jakob et al. [JHY∗14]
and focuses on glittery materials. The micro-surface is composed
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of mirror flakes, randomly placed on the surface. These are used to
compute a discrete, patch-related NDF used as part of a microfacet-
based BRDF. An acceleration hierarchy speeds up contributing re-
flector queries. Their method only models single-scattering and
micro-flakes can be back-facing and consequently dismissed. The
BRDF normalization is global, not footprint (patch) based. Im-
portance sampling is also not optimal, as non-contributing re-
flectors may inadvertently be sampled. The extension proposed
by Atanasov and Koylazov [AK16] alleviates this issue, at the
price of going through all the flakes falling into a footprint,
which is inefficient. Other works concentrate on improving perfor-
mance [WWH18]. Selected methods offer real time performance
[ZK16, WB16] but cannot really be used for photorealistic render-
ing.

The work of Raymond et al. [RGB16] models specular scratches
randomly distributed over a surface. Users have control over the
profile, the orientation and the density of the scratches. They simu-
late multiple-scattering by pre-computing the reflectance distribu-
tions of scratch profiles with a 2D ray tracer. The full 3D-BRDF
is reconstructed by interpolating these 2D-BRDFs. Mipmapped fil-
tering is used to calculate the relative area of the scratches in a
footprint. Their method gives realistic results, its importance sam-
pling procedure is efficient, multiple-scattering is taken care of, but
they only handle scratched surfaces.

Glint Integrators based on a Normal Map. As opposed to meth-
ods using procedural surfaces, glint integrators based on normal
maps provide more flexibility over material appearance. Scratched,
brushed, rough metals and glittery objects can be modeled by
changing the normal map contents. The work of Yan et al. 2014
[YHJ∗14] was the first to introduce this micro-surface represen-
tation, obtaining realistic renderings of a wide range of materi-
als. Several papers improve the performance of their method by
either using 4D NDF mixtures [YHMR16] or spherical harmon-
ics [GGN18]. The work of Chermain et al. [CCM18] focuses on
rendering quality and proposes footprint-relative normalization fac-
tors. The importance sampling procedure is efficient since it uses
footprint-based NDFs, however visibility information is not used,
causing fireflies and zero-radiance paths. The method of Gamboa
al. [GGN18] does not use importance sampling. Instead, they ef-
ficiently integrate all the incident radiance, at the cost of a large
bunch of pre-computed data. The common shortcoming of these
methods is their single-scattering formulation, causing black over-
all appearance for rough surfaces. They also rely on classic normal
mapping, where back-facing normals lead to black holes on the sur-
face. Our work tackles these issues.

2.2. Microfacet-Based Normal Mapping

Classic normal mapping causes black fringes on surfaces and re-
quires complex re-normalization factors, as demonstrated in the
work of Schüssler et al. [SHHD17]. To solve these issues, they pro-
pose a microfacet-based BRDF faking normal perturbations, using
tangent facets to seal the micro-surface. The tangent facets make re-
ally continuous an otherwise discontinuous normal map composed
of unrelated, individual discrete facets. They rely on random walks
to model infinite multiple-scattering on the micro-surface, and de-
rive an interesting closed-form expression for the two-scattering

order. They obtain much more realistic results than classic normal
mapping. Our model is inspired by their work but uses a symmetric
dual normal, more appropriate for glints rendering that would oth-
erwise be negatively impacted by vertical facets (Figure 2). Another
major difference is that Schüssler et al. use expensive random walks
to account for multiple-scattering, whereas we estimate the energy
going into indirect bounces and compensate for it by using an al-
ternate (or energy-compensation) BRDF to increase performance.
Figure 3 gives a quick hint at the differences between classic nor-
mal mapping, the model of Schüssler et al. and our model.

Figure 2: Comparison between a smooth Beckmann surface (left),
a microfacet-based normal mapped surface using tangent nor-
mals (middle, [SHHD17]) and using symmetric normals (right,
our micro-surface). The normal map being very dense in this Fig-
ure, tangent facets introduce unwanted roughness compared to
the smooth model while our micro-surface does not. Even with
262,144 spp in this scene, there still are fireflies as random walks
are used to model multiple-scattering.

2.3. Multiple-Scattering BRDFs

Recently, the multiple-scattering of light over micro-surfaces has
gained a lot of interest in the graphics community. This is thanks
to the work of Heitz et al. [HHdD16] on microfacet BSDFs using
the Smith model. They provide ground truth results by matching
stochastic reflectance functions with simulated data. The bottleneck
of their method is the random walk approach that requires several
evaluations to provide converged results. Recent works propose
more practical multiple-scattering reflectance models, using dis-
tributions of specular V-grooves [LJJ∗18, XH18, SPSH19]. These
V-cavity-based methods are too expensive for our purpose. Finally,
to efficiently model multiple-scattering, severals works directly re-
integrate the energy lost by a single-scattering formulation, focus-

uu1

Classic

uu1

[SHHD17]

u

Ours
ωp(u1) ωp(u1)

u1

ωp(u1)ωs(u1)
ωt(u1)

ωg

Figure 3: Left: classic normal mapping. Middle: normal mapping
of Schüssler et al. [SHHD17]. Right: our model. The symmetric
facets ωs do not change overall material roughness the way tangent
facets ωt do. For glint rendering, where the normal map is highly
repeated, tangent facets would alter too much the appearance.
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ing on either reciprocity [CK17, Hil18, FA19] or efficient sam-
pling [Tur19]. We also use energy compensation, but do it in the
context of glint rendering using microfacet-based normal mapping.
Our method offers robust importance sampling, and a customizable
energy-compensation BRDF.

3. Local Multiple-Scattering BRDF

Our model is built around the definition of a local and a patch-wide
BRDFs. We start with the formulation of the local BRDF.

3.1. Micro-Surface Model Overview

Our micro-surface model is based on an interpolated, continuous
normal map typically built from a discrete texture map. Each posi-
tion u over the map has a perturbed normal ωp as well as an associ-
ated dual normal ωs. This dual normal is symmetric to ωp with re-
spect to the geometric normal ωg, forming a V-shaped cavity (Fig-
ure 3). Locally, at any position u over the surface, the orientation
of the micro-normals ωp and ωs are used to derive the probability
that an incident or outgoing ray direction hits either normals, taking
into account the shading induced by its symmetric counterpart. All
V-cavities have the same micro-BRDF. We detect situations incur-
ring a loss of energy caused by local single-scattering within the
V-cavity and account for this loss by also evaluating an additionnal
BRDF. Stochastic Monte-Carlo rendering leverages this model to
importance sample the surface locally.

3.2. Normal Distribution Function and Projected Areas

Normal distribution functions (NDF) are widely used to model
micro-surfaces. They give the density of micro-facets ωm at a sur-
face position u. In our case, this function is composed of two Dirac
distributions centered around the perturbed normal ωp and the sym-
metric normal ωs (we drop the dependance on u for the rest of the
section):

D(ωm) =
1
2

δωp(ωm)

ωp ·ωg
+

1
2

δωs(ωm)

ωs ·ωg
. (1)

This NDF is a Cook-Torrance V-cavity NDF. Its projected area onto
the geometric normal is exactly one [CT81, Hei14]. The projected
areas of a facet and its dual towards the observation direction ωo
are

ap(ωo) =
〈ωo,ωp〉
〈ωp,ωg〉

, as(ωo) =
〈ωo,ωs〉
〈ωs,ωg〉

(2)

where 〈ω1,ω2〉 is the clamped dot product. From these definitions,
the probabilities λp(ωo) and λs(ωo) that an observation ray inter-
sects ωp or ωs can be derived (Figure 4):

λp(ωo) =
ap(ωo)

ap(ωo)+as(ωo)
, λs(ωo) =

as(ωo)

ap(ωo)+as(ωo)
. (3)

The terms λp and λs will be used to evaluate (Section 3.4) and
sample (Section 3.6) the BRDF.

3.3. Masking Function

The masking function gives the proportion of microfacets ωp or ωs
that are visible from the observation direction ωo. It is called the

λp(ωo)

λs(ωo)

ωi

ωo

G1(ωi,ωp)

Figure 4: Illustration of the intersection probabilities and the shad-
owing function.

shadowing function when using the incident direction ωi as param-
eter (Figure 4). The V-Cavity masking function is [CT81, Hei14]:

G1(ωo,ωp)= H(〈ωo,ωp〉)min

(
1,

〈ωo,ωg〉
1
2 ap(ωo)+

1
2 as(ωo)

)

= H(〈ωo,ωp〉)min
(

1,
2〈ωo,ωg〉〈ωp,ωg〉
〈ωo,ωp〉+ 〈ωo,ωs〉

)
(4)

for the facet with normal ωp. For the micro-normal ωs, it is

G1(ωo,ωs) = H(〈ωo,ωs〉)min
(

1,
2〈ωo,ωg〉〈ωs,ωg〉
〈ωo,ωp〉+ 〈ωo,ωs〉

)
(5)

where H(−) is the Heaviside function.

As in Schüssler et al. [SHHD17], we assume no correlation
of masking and shadowing, giving a simple separable masking-
shadowing function (here for the micro-normal ωp):

G2(ωo,ωi,ωp) = G1(ωo,ωp)G1(ωi,ωp) (6)

where ωi is the incident direction. This choice has an important
implication for the importance sampling procedure (Section 3.6).
We have to determine when a ray is shadowed and with this as-
sumption, we can directly use the shadowing function G1(ωi,ωm)
instead of using explicit ray-facet intersections [SHHD17].

3.4. Single-Scattering BRDF

In the context of glint rendering, the material of the two facets
is very specular. Assuming that the two facets of our micro-
surface have the same micro-BRDF fm, the cosine-weighted single-
scattering BRDF f1 for our V-cavity is

f1(ωo,ωi,ωp)〈ωi,ωg〉= λp(ωo) fm(ωo,ωi)〈ωi,ωp〉G1(ωi,ωp)

+λs(ωo) fm(ωo,ωi)〈ωi,ωs〉G1(ωi,ωs). (7)

The BRDF expression f1 is the result of the integral of the contribu-
tion of each micro-normal ωm over the hemisphere Ω [SHHD17].
The shadowing function and intersection probability of each facet
(Figure 4) weight the corresponding facet’s cosine-weighted micro-
BRDF fm, rotated on either ωp or ωs. Note that f1 does not create
any energy and is symmetric as long as the same goes for fm.
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3.5. Multiple-Scattering BRDF

In this section, we demonstrate how we estimate f∞, the multiple-
scattering BRDF, for a single cavity. Its definition is based on f1
and an energy-compensation BRDF f2+ meant to represent second-
or-more order scattering. We estimate the energy 1− E1 going
through this latter BRDF, and weight its evaluation using this value.

Energy Term Assuming that the micro-BRDF fm is perfectly
specular and non-absorptive, the directional albedo E1 of f1, also
called the energy term, is

E1(ωo,ωp) =
∫

Ω

f1(ωo,ωi,ωp)〈ωi,ωg〉dωi

= λp(ωo)G1(ωr(ωo,ωp),ωp)

+λs(ωo)G1(ωr(ωo,ωs),ωs) (8)

where ωr(ω1,ω2) is the reflected direction of ω1 around the normal
ω2. The term E1 gives the radiance that escapes the micro-surface
after the first bounce of light in the outgoing direction ωo. For the
single-scattering BRDF f1, this value ranges from 0 to 1 for any
different couple of (ωo, ωp).

In order to achieve 100% energy conservation, we define our
local multiple scattering BRDF f∞ as

f∞(ωo,ωi,ωp) =

f1(ωo,ωi,ωp)+(1−E1(ωo,ωp)) f2+(ωo,ωi). (9)

Weighted by the cosine, the BRDF integrates to one over incident
directions∫

Ω

f∞(ωo,ωi,ωp)〈ωi,ωg〉dωi

= E1(ωo,ωp)+(1−E1(ωo,ωp))
∫

Ω

f2+(ωo,ωi)〈ωi,ωg〉dωi

= 1+E1(ωo,ωp)−E1(ωo,ωp) = 1 (10)

only if the energy-compensation BRDF f2+(ωo,ωi)〈ωi,ωg〉 does.
The choice of f2+ is arbitrary and is discussed in Section 5.2.
Our formulation for f∞ has a simple closed-form expression and
can be evaluated efficiently. It is non-symmetric as can be seen
in Equation 9, swapping ωo and ωi yields a different E1 term
(E1(ωo,ωp) 6= E1(ωi,ωp)). This is only a deal breaker when using
bidirectional path tracing, and does not negatively impact visual
appearance otherwise.

In practice, we mollify the Dirac distribution of fm to a NDF
with tiny roughness αm [YHJ∗14, YHMR16, CCM18] in order to
evaluate f1 (Equation 7). Note that the energy term of Equation 8
still guarantees energy conservation with a mollified Dirac. Section
5.1 shows that f∞ passes the white furnace test when the fm NDF
has a tiny roughness, validating this approximation.

Fresnel Term. The above model does not incorporate Fresnel ef-
fects, which give the object its color and is, in the case of multiple
scattering, responsible for the saturation effect that is visible on
rough surfaces. We therefore need to choose the absorption coeffi-
cient for the energy-compensation BRDF f2+, but it is not trivial.
We choose to approximate it by the Fresnel term F1 of the micro-
BRDF fm. The local multiple-scattering BRDF f∞ for an absorp-

tive normal map is now

f∞(ωo,ωi,ωp) = f1(ωo,ωi,ωp)

+(1−E1(ωo,ωp))F1(ωo,ωg) f2+(ωo,ωi), (11)

where F1(ωo,ωg) colors the non-absorptive f2+ BRDF the same
way it does for f1. Note that Turquin [Tur19] performs a similar
approximation for its compensated microfacet BRDF. His model
exhibits similar results as the ground truth [HHdD16].

3.6. Importance Sampling the Local BRDF

To importance sample f∞, we first sample the cosine-weighted
single-scattering BRDF f1 by choosing a facet using the intersec-
tion probabilities λp(ωo) and λs(ωo). A direction ωi is then picked
by importance sampling the micro-BRDF fm of the sampled micro-
normal. If the sampled direction ωi is shadowed (Figure 5, middle)
or goes inside the surface (Figure 5, left), multiple-scattering oc-
curs and f2+ is sampled. The probability that the sampling of the
single-scattering BRDF f1 fails, i.e. ωi is shadowed or transmitted,
is exactly equal to 1−E1(ωo,ωp). Our importance sampling proce-
dure is summarized in Algorithm 1 (U is a uniform random number
in the [0,1[ range) and is illustrated in Figure 5. It is guaranteed to
give weights w between 0 and 1 as long as fm and f2+ also do. The
weight will always be 1 if there is no Fresnel effect, considering fm
has a near-zero roughness. Otherwise, w is multiplied by the Fres-
nel term. In all cases, arbitrary large weights cannot happen and
firefly artifacts are avoided.

Algorithm 1: Sample f∞(ωo,ωi,ωp)〈ωi,ωg〉
ωm← [U < λp(ωo) ? ωp : ωs ] // Choose a facet
(ωi,w)← sample fm(ωo,ωi,ωm)〈ωi,ωm〉 // Sample fm
if ωi ·ωg ≤ 0 or U ≥ G1(ωi,ωm) then

/* Ray goes inside the surface or is shadowed */
(ωi,w)← sample f2+(ωo,ωi)〈ωi,ωg〉 // Sample f2+

end

ωo ωo
ωo

Transmitted

Unsuccessful sampling of f1
→ sampling of f2+

Successful
sampling of f1

Shadowed Single-scattering

Figure 5: Different cases of local multiple-scattering BRDF sam-
pling.

4. Multiple-Scattering Patch BRDF

In this section, we introduce the theoretical background to define,
evaluate and sample patch BRDFs (P-BRDFs) based on a normal
map. We then explain how to efficiently compute our P-BRDF
based on the local multiple-scattering BRDF f∞ introduced in the
previous section. We close this section with our importance sam-
pling procedure.
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4.1. Patch BRDF Definition

Our P-BRDF computes the density of outgoing radiance for a flat
geometric surface P instead of a surface point u. The patch P
matches the ray footprint. It is represented by a normalized low-
pass filter kP , i.e.

∫
R2 kP (u)du = 1 and antialiases the radiance of

all the glints in the footprint. Several techniques for surface filter-
ing [Ige99, SW01, BYRN17] give methods to construct P during
path tracing.

Our P-BRDF fP is defined as an integral of local BRDFs
weighted by the ray footprint kP (u) at each position u:

fP (ωo,ωi) =
∫
R2

f (ωo,ωi,ωp(u))kP (u)du (12)

where f (ωo,ωi,ωp(u)) is the surface’s BRDF perturbed by ωp(u).
Note that this sharply contrasts previous works [JHY∗14, YHJ∗14,
YHMR16, CCM18, GGN18] for which the P-BRDF formulations
use a P-NDF.

4.2. Patch-BRDF Evaluation

By replacing f with our multiple-scattering BRDF f∞ perturbed
by ωp(u), we get

fP (ωo,ωi) =
∫
R2

f∞(ωo,ωi,ωp(u))kP (u)du

= f1(ωo,ωi,P)+E2−(ωo,P)F1(ωo,ωg) f2+(ωo,ωi). (13)

The Fresnel term F1(ωo,ωg) and the energy-compensation BRDF
f2+(ωo,ωi) can be taken out of the integral because these terms
do not depend on u. The term f1(ωo,ωi,P) is the single scattering
patch-BRDF, defined as

f1(ωo,ωi,P) =
∫
R2

f1(ωo,ωi,ωp(u))kP (u)du. (14)

The term E2−(ωo,P) is the energy lost by the single-scattering
BRDF f1 in the footprint, and its expression is

E2−(ωo,P)=
∫
R2

1−E1(ωo,ωp(u))kP (u)du

= 1−
∫
R2

E1(ωo,ωp(u))kP (u)du. (15)

We now develop how we calculate f1(ωo,ωi,P) and E2−(ωo,P).

4.2.1. Single-Scattering Patch BRDF Evaluation

Until now our model, based on Equation 14, implies an infinite
set of local BRDFs. In practice, we use discrete local BRDFs and
assume a finite set of m perturbed normals ωp:

f1(ωo,ωi,u) =
m

∑
j

f1(ωo,ωi,ωp(u j))k j(u). (16)

Seed points u j separated by a distance h are uniformly distributed
across the normal map. Each BRDF at position u j is weighted by
its distance to u to ensure smooth transitions between two adjacent
local BRDFs. As our footprint kP is Gaussian, we use a Gaussian
weight k j for the BRDF in order to have an analytic weighting of
f1. The standard deviation of k j is set to σh = h/

√
8log2 as in

the methods of Yan et al. and Chermain et al. [YHMR16, CCM18]
to achieve an equal contribution of two adjacent BRDFs when the
evaluation point u is halfway between the two (Figure 6).

kP (u)

u1

u

k1(u) k6(u)

u6. . .

. . .

Figure 6: Discrete set of Gaussian weighted BRDFs, and associ-
ated discrete set of normals ωp(u j).

Substituting the sum expression of f1 (Equation 16) into the
single-scattering patch-BRDF (Equation 14) gives

f1(ωo,ωi,P)=
∫
R2

m

∑
j

f1(ωo,ωi,ωp(u j))k j(u)kP (u)du

=
m

∑
j

f1(ωo,ωi,ωp(u j))
∫
R2

k j(u)kP (u)du

=
m

∑
j

f1(ωo,ωi,ωp(u j))W j (17)

where the weight Wi is the analytic solution of the integral of the
product of two 2D Gaussians, here the local weight k j and the ray
footprint kP .

Acceleration Hierarchy. As explained in Section 3, the local
BRDF f1 has two symmetric facets with a near-perfectly specular
material fm. This micro-BRDF is a delta Dirac function, but is mod-
eled for practical reasons by a microfacet-based BRDF with very
low roughness αm. This implies that f1 is different than zero only
when the half vector ωh =

ωo+ωi
||ωo+ωi|| approximately matches the per-

turbed normal ωp or its symmetric ωs, and is used to accelerate the
sum evaluation of Equation 17 by pruning out non-contributing dis-
crete BRDFs.

A 4D Bounding Volume Hierarchy (BVH) is built using the dis-
crete set of m perturbed normals ωp. Each normal has a position
u j, a slope p̃ j and a 4D bounding box defining the (u, p̃) domain
where the perturbed facet of f1 reflects a non-negligible amount of
light, for a given couple of position u and half vector slope h̃. The
4D bounding box is (u j ± 3σh, p̃ j ± 3σm), where σm = αm/

√
2,

assuming that the contribution is zero beyond 3σ. This is mostly
similar to the hierarchies used in Yan et al. [YHMR16] and Cher-
main et al. [CCM18]. Because of the use of a symmetric facet, we
have to intersect the 4D BVH with (u, h̃) as in the previous meth-
ods, but also with (u,−h̃) to account for the contribution of the ωs
micro-normals.

4.2.2. Energy Lost in the Patch

Evaluating the energy lost in the patch requires us to process all
the perturbed normals ωp falling into the ray footprint. For per-
formance reasons, we assume that normals ωp follow a Gaussian
distribution D of normals ωp having an anisotropic footprint rough-
ness (αx(P), αy(P)). In other words, we change the integral do-
main from spatial positions u to perturbed normals ωp, similarly to
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Heitz et al. [HNPN13]

E2−(ωo,P) = 1−
∫
R2

E1(ωo,ωp(u))kP (u)du

≈ 1−
∫

Ω

E1(ωo,ωp)D(ωp,αx(P),αy(P))dωp

≈ 1−
(

cos2(φo)
∫

Ω

E1(θo,ωp)D(ωp,αx(P))dωp)

+sin2(φo)
∫

Ω

E1(θo,ωp)D(ωp,αy(P))dωp

)
.(18)

The terms θo and φo are respectively the polar and azimuthal an-
gles of observation direction ωo. We use φo to weight the spher-
ical integrals implying an isotropic distribution D(ωp,α) of nor-
mals ωp. By doing so, we can precompute integrals of the form∫

Ω
E1(θo,ωp)D(ωp,α)dω, and store the values into a small 2D ar-

ray (128×128 floats, Figure 7) for different couples of roughness α

and polar angles θo. To calculate αx(P) and αy(P) at render time,
we use the method described in LEADR mapping [DHI∗13], based
on the first and second moments of a slope map.

α

θo

D(ωp,α)

x
y

z
ωo θo

ωp

Figure 7: Let D(ωp,α) be a Gaussian normal distribution with
isotropic roughness α over the normal map space ωp. D approx-
imates the accurate normal distribution within a ray footprint.
We use it to precompute footprint-dependent first-bounce energies∫

Ω
E1(θo,ωp)D(ωp,α)dω. The values are stored in a 2D array,

mapping energy quantities to (α,θo) value pairs.

4.3. Importance Sampling the Patch-BRDF

Importance sampling is used to efficiently solve the patch scattering
equation:

L(ωo) =
∫

Ω

L(ωi) fP (ωo,ωi)〈ωi,ωg〉dωi

=
∫

Ω

L(ωi)
∫
R2

f (ωo,ωi,ωp(u))〈ωi,ωg〉kP (u)dudωi (19)

where L(ωi) is the incident radiance from direction ωi. The sam-
pling of a patch-BRDF fP (ωo,ωi) is done by sampling (u,ωi) with
the following probability density function (PDF)

PDF(ωi,u) = f (ωo,ωi,ωp(u))〈ωi,ωg〉kP (u). (20)

The marginalized random variable u is first chosen, followed by the
conditional random variable ωi|u. For the first step, the marginal-
ized PDF is

PDF(−,u)=
∫

Ω

f (ωo,ωi,ωp(u))〈ωi,ωg〉dωikP (u)

= E(ωo,ωp)kP (u) (21)

where E is the energy term. This simplifies to kP (u) only
if the local BRDF f is 100% energy conserving, that is, if

∫
Ω

f (ωo,ωi,ωp(u))〈ωi,ωg〉dωi = 1 for all u ∈ R2. Because our
local BRDF honors this condition, the sampling first consists in
sampling the ray footprint kP (u). During the second step, the con-
ditional PDF is f (ωo,ωi,ωp(u))〈ωi,ωg〉 at the sampled position u.

To our knowledge, no other method has such a simple and effi-
cient sampling procedure. Other methods either disregard the ob-
servation direction when sampling the patch [YHJ∗14, JHY∗14,
YHMR16, CCM18], or need to walk through all normals if they
want to do it [AK16] (Figure 8), which is inefficient.

kP (u)

u

ωo

Figure 8: Classic normal-mapped surface. Importance sampling
visible normals can only be done if all normals in the footprint are
examinated one by one. Our method does not have to go through
this.

5. Results and Discussion

In this section, we evaluate our method and compare it with-state-
of-the-art methods. All results have been rendered with the PBRT-
v3 [PJH16] renderer on a dual Intel Xeon Gold 6138 CPU com-
puter. Figures 2 and 9 do not use pixel footprints, while all other
figures in the paper do. After the first light bounce, we never com-
pute any footprint and rely on a smooth BRDF using the overall
roughness and Fresnel term of the normal map, as in Jakob et
al. [JHY∗14]. We only use forward path tracing since our BRDF
is asymmetric. All figures use h = 1 (Section 4.2.1) except Figures
14 and 15 (scratches part only).

5.1. Validation of the Local BRDF

In this section, we validate our multiple-scattering local BRDF
f∞. To do so, we compare renderings and white furnace tests of
classic and microfacet-based normal mapped surfaces. In Figure
9, the normal map is a Beckmann surface (α = 0.5). We com-
pare f1 and f∞ to classic normal mapping. Black fringes are vis-
ible on the surface with this latter method. The single-scattering
BRDF f1 partially eliminates these artifacts while the multiple-
scattering BRDF f∞ makes them completely disappear. Further-
more, the BRDF f∞ passes the white furnace test. We use the fol-
lowing parameters: fm is a classic microfacet-based BRDF with a
Beckmann NDF (αm = 0.02). Its Fresnel term F1 models a gold
metallic material. The energy-compensation BRDF f2+ is lamber-
tian (diffuse), with an albedo equal to F1. Notice how the diffuse
compensation and coloring incurred by F1 is natural and plausibly
simulates multiple-scattering on the micro-surface. For all other re-
sults, we use αm = 0.02 and a diffuse f2+, unless otherwise stated.
In Figure 9, bottom rows, the normal map is repeated 20 times more
than in the top rows, with other parameters unchanged. The back-
facing normals associated with classic normal mapping aggregate,
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Figure 9: Comparison between classic normal mapping (left) and
either our single (middle) or multiple (right) scattering microfacet-
based normal mapped surface. Our multiple-scattering BRDF f∞
is 100% energy conserving and removes the black holes (top rows)
and the overall dark appearance (bottom rows) on the surface. In
the bottom rows, the normal map repetition is twentyfold, leading
to a coarse Beckman specular lobe. We use 131,072 spp to render
the majority of glints and achieve noise-free renderings.

leading to an overall dark appearance (Figure 9, bottom left). Our
local multiple-scattering BRDF f∞ does not have this issue (Figure
9, bottom right).

5.2. Patch-BRDF Results

Figure 10 shows different materials that our method can model.
An animation is provided in the supplemental materials to evalu-
ate the temporal coherence offered by our method. Brushed metals
with dents can be obtained using a Beckmann surface instance with
very high anisotropy (αx = 0.5, αy = 0.01, see the bigger spoon).
The knife uses a texture with scratches in only one direction, while
the dessert spoon uses random directions, reproducing a completely
different appearance. The forks have a specular f2+ matching a
plastic appearance. The green fork uses a Beckmann normal map
with high isotropic roughness α = 1, and the purple one uses a
Voronoï texture with α = 1.41. Finally, the silver spoon has a Beck-
mann surface with α = 0.1.

Figure 10: Cutlery scene rendered at 1024 spp and exhibiting a
wide range of materials that our method can handle. From left to
the right: brushed and scratched metals, green coated rough plas-
tic, machined metal, rough metal and finally purple coated glittery
plastic.

Memory footprint. For the normal map representation and the
roughness estimation in the footprint, we need two mipmapped tex-
tures, one for the normal map slopes and another one for the sec-
ond moments. All our results use 2048×2048 mipmapped textures,
each requiring 96 MiB. The lost energy approximation of Section
4.2.2 takes up 128× 128 floats (64 KiB). The acceleration hier-
archy of Section 4.2 uses a similar size than the one used by the
methods it is based on [YHMR16,CCM18] for the same value of h
(512 MiB for h = 1, 2048 MiB for h = 0.5).

Impact of the Patch-Energy Approximation Our P-BRDF re-
lies on an approximation of the energy lost in the patch (Section
4.2.2) to speed up evaluations. Figure 11 compares this approxima-
tion with the accurate quantity, directly calculated with a discrete
weighted sum of f∞ across the whole ray footprint and fully pass-
ing the white furnace test. Our approximation method provides a
2× speed up, except for the scratched surface which includes a lot
of planar normals. While the white furnace tests don’t come out
perfect, they are significantly better than those of previous meth-
ods, and we offer a plausible appearance, without any black holes
on the surface, unsaturated colors or overly dark general appear-
ance.

Importance Sampling. The weights of our importance sampling
procedure are never greater than one, guaranteeing renderings with-
out unnaturally bright pixels (Figure 12, right). On the contrary,
previous methods can give arbitrary large sampling weights to com-
pensate for zero-radiance samples (Figure 12, left). When the sur-
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Exact: 50.5 s Approx.: 22.5 s Exact: 48.5 s Approx.: 38.5 s Exact: 53.5 s Approx.: 28 s
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Figure 11: Renderings and white furnace tests of our P-BRDF using the accurate and approximated energy term, for different normal maps.
From left to right: isotropic Beckman surface with α = 0.5, scratched surface and anisotropic Beckmann surface with αx = 0.5 and αy = 0.1.
Our exact model passes the white furnace test. Our approximatedP-BRDF is not perfect, but has good energy properties, better performance
and gives results similar to the reference.

Chermain et al.: 3.5 s Our method.: 4.5 s

Figure 12: A killeroo rendered at 256 samples per pixel. Fireflies
are visible when the P-BRDF importance sampling does not use
the observation direction (left). Our method does and generates no
firefly.

face is partially shadowed as in Figure 12, no tiny reflections should
be visible. This is the case for our model and not for the previous
method.

Choosing the Energy-Compensation BRDF. Most figures in the
paper use a diffuse energy-compensation BRDF f2+ to model
multiple-scattering. This choice gives results comparable to the
previous methods, where their overall, dark appearance can be
seen as a diffuse material with a low albedo. Figure 13 shows the
difference between the use of a diffuse f2+ and a specular f2+
(α = 0.02). Metallic paint can be modeled with a near-perfectly

Diffuse f2+ Specular f2+

Figure 13: A killeroo rendered at 256 samples per pixel with our
P-BRDF using either a diffuse (left) or a near-perfectly specular
(right) energy-compensation BRDF f2+, giving different material
appearance.

specular f2+, giving the impression that metallic flakes are coated
with a transparent varnish. Using a lambertian f2+ suits materials
with rough appearance.

Comparison with Methods using Gaussian Mixtures. We com-
pare the renderings of glittery surfaces using two different methods
in Figure 1 (and supplemental video). The methods of Chermain
et al. and Yan et al. suffer from backfacing normals, related black
fringes and dark overall appearance. The outcome of the white fur-
nace test is significantly better with our method. Figure 1 uses
the flat variant of the Gaussian mixtures [YHMR16], that is best
suited to represent glittery surfaces (constant micro-BRDF rough-
ness αm = 0.02).

Figure 14 (and supplemental video) shows an object with a struc-
tured micro-surface rendered using different methods. Gaussian
mixtures-based methods exhibit unnatural dark or bright scratches.
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Our method: h = 0.5 Chermain et al. [CCM18] Yan et al. [YHMR16]Our method: h = 1

Figure 14: Scratched metallic orb renderings and white furnace tests using our method and state-of-the art works. Note that our multiple-
scattering glint integrator does not darken the silhouette of the object or the scratches the way other methods do. Rendering times from left
to right: 129.5 s, 202.5 s, 296.5 s and 258.5 s.

Ours [CCM18] [YHMR16] Ours [CCM18] [YHMR16]
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Figure 15: For close-up views, our patch energy approximation gives underestimated values, leading to poor white furnace tests, though
better than other methods. Furthermore, our renderings are more realistic. Rendering times from left to right: 84.5 s, 65.5 s, 52.5 s, 194.5 s,
407.6 s and 398.6 s.

They can be observed in the right area of the orb, due to back-facing
normals or incorrect P-BRDF normalization. Structured micro-
surface renderings use h = 0.5 (Figures 14 and 15) for our method
for a reason that we now explain.

The models of Chermain et al. and Yan et al. reconstruct an in-
terpolated normal map with NDF mixtures, where each NDF is a
Gaussian with a variance that best fit locally the curvature of the
input surface. Per-Gaussian reconstruction kernels k j further inter-
polate BRDF values between one another at render time, resulting
in a surface model fundamentally continuous, even when the sur-
face has relatively high frequency contents locally. Our model re-
sembles the Jacobian-free, flat element variant (with fixed Gaussian
roughness) of Yan et al., where normals are not interpolated contin-

uously. It defines two normals for a given surface position instead
of one. Equation 8 of our model forbids the use of high local rough-
ness for the micro-BRDF. Our method therefore solely relies on the
k j reconstruction filter to interpolate neighboring BRDF values at
render time. Consequently, local high frequency contents are ap-
proximated less accurately than when using mixtures of Gaussians
with varying roughness. Scratches appear sharper with our model,
less smoothed down. This issue can be alleviated by reducing the
h sampling distance (increasing the density of V-cavities). On the
upside, the intrinsic shadowing of V-cavities naturally weights the
intensities of the glints, favoring glints continuity when animating.
Note that high roughness severely impacts performance of previ-
ous methods, causing BVH node extents to be extremely large. For
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example, the orb of Figure 14 rendered with a fixed micro-BRDF
roughness α = 0.02 (flat elements variant) requires about 90 s with
the method of Yan et al. and Chermain et al. Decreasing the value
of h does of course affect performance, but to a lesser extent.

The quality of the lost energy approximation (Section 4.2.2) de-
pends on the size of the ray footprint. Large ray footprints lead to
favorable Gaussian approximations of normals distributions (Equa-
tion 18). For close-up views, smaller foorprints cause lost ener-
gies to be underestimated, leading to poor white furnace tests (Fig-
ure 15). At low scales, roughness is not a reliable indicator for the
lost energy estimation. Other methods exhibit even poorer results.
Yan et al. normalize their footprint-dependant BRDF in a footprint-
independent way. Chermain et al. suffer from the lack of multiple-
scattering.

6. Conclusion and Future Works

In this work, we have presented the first practical multiple-
scattering glint integrator based on normal maps. Our method lever-
ages a local energy preserving microfacet-based BRDF that fakes
normal perturbations. Our patch-BRDF can be used in Monte Carlo
forward path tracing using multiple importance sampling. A large
collection of material appearances can be reproduced through the
use of different texture maps. Compared to the previous methods
based on classic normal mapping, we obtain renderings that are free
of artifacts such as black holes or a too dark overall appearance.

Currently available glint integrators only model opaque surfaces.
To our knowledge, no method addresses the problem of rendering
rough or scratched glass. Transparent materials are more sensitive
to energy loss. We hope that our new approach will make solving
this problem more accessible.
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