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Figure 1: Left: Sponza scene with sparkling fabrics and stones is rendered on an NVIDIA GeForce RTX 2080 (3.0 ms/frame). Right: A
sparkling plane perpendicular to the camera with specular microfacet density increasing from left to right. Top right: our physically based
BRDF (2.5 ms/frame) converges to Cook and Torrance’s BRDF (0.4 ms/frame), which assumes an infinite number of microfacets. Bottom
right: the state-of-the-art method [ZK16] (1.3 ms/frame) is not physically based and does not converge to the BRDF of Cook and Torrance.

Abstract
Physically based rendering of glittering surfaces is a challenging problem in computer graphics. Several methods have proposed
off-line solutions, but none is dedicated to high-performance graphics. In this work, we propose a novel physically based BRDF
for real-time rendering of glints. Our model can reproduce the appearance of sparkling materials (rocks, rough plastics, glitter
fabrics, etc.). Compared to the previous real-time method [ZK16], which is not physically based, our BRDF uses normalized
NDFs and converges to the standard microfacet BRDF [CT82] for a large number of microfacets. Our method procedurally
computes NDFs with hundreds of sharp lobes. It relies on a dictionary of 1D marginal distributions: at each location two of
them are randomly picked and multiplied (to obtain a NDF), rotated (to increase the variety), and scaled (to control standard
deviation/roughness). The dictionary is multiscale, does not depend on roughness, and has a low memory footprint (less than
1 MiB).

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Photo-realism in real-time is a core topic of recent computer graph-
ics research and has been ever since. However, in spite of drastic
improvements of graphics hardware (GPU), it remains highly chal-
lenging because of the very strong memory and time constraints

it imposes to both global light transport and local shading com-
putation. Local shading reproduces the appearance of the actual
material that objects are made of. Its basis is the spatially-varying
bi-directional reflectance distribution function (SV-BRDF), a com-
plex 6D function, modelling how individual surface points reflect
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the light received. Most frequently, its representation is built upon
statistics at the sub-pixel level, these statistics modelling the surface
non-visible micro-scale geometry and roughness. A common statis-
tical representation is the Normal Distribution Function (NDF) cor-
responding to sets of microfacets. In the context of photo-realism,
the physical validity of the BRDF is mandatory. Concretely, it must
respect Helmholtz reciprocity and energy conservation. Often this
can be obtained easily for smooth single scale materials, where
statistics are defined by single lobe functions assuming an infinite
number of microfacets. Conversely, high-frequency specular ma-
terials, like glittery materials such as metallic paints, plastics, or
sparkling fabrics depict strong angular and spatial variations. They
are represented by multi-lobes and multi-scale functions, which are
much more challenging because physical accuracy and visual co-
herence are hard to maintain through all levels of scales. “Explicit”
representations, e.g. normal maps, are typically too time and mem-
ory consuming for such fine details, whereas computationally ef-
ficient procedural representations lack physical validity. Physically
based BRDFs save artists time by avoiding post-rendering correc-
tions. Besides, some rendering engines need BRDFs that conserve
energy so that their mathematical model is consistent as a whole.

In this paper, we introduce a new, procedural and physically
based BRDF to reproduce the appearance of sparkling materials,
such as flakes or coarse rough metal and plastic. It is the first glit-
ter material model that unifies efficient computation, extreme com-
pactness and physical validity. The user controls the surface rough-
ness, but also the density of microfacets on the surface. When the
number of microfacets increases, our model converges towards a
standard smooth BRDF based on a continuous NDF characterized
by a single lobe (infinite number of microfacets).

As for previous works, our BRDF uses aP-NDF, which is a NDF
defined for a patch P on the surface. The patch notation P repre-
sents the screen pixel footprint on this surface. Our P-NDF is mod-
elled by a weighted sum of high-frequency NDFs, defined for each
cell of a spatially unbounded MIP hierarchy. At level zero, i.e., at
the finest level of detail (LOD), NDFs have few lobes and represent
few discrete microfacets. Lobes are progressively and consistently
introduced as hierarchy level increasing. At the last LOD, the NDF
is a standard Beckmann distribution, constructed by aggregating all
individual lobes of the lower levels. The novelty of our approach is
that our NDFs are generated on-the-fly by multiplying two random
marginal distributions, defined in a lower dimension and uniformly
picked from a pre-defined dictionary. This permits us to maintain
very high performance and extreme compactness. Each of these
NDFs is rotated and then scaled. The rotation is random for each
MIP hierarchy cell. It increases the variety of NDFs that can be
generated using the dictionary and thus avoids rendering artefacts.
The scaling allows to use a single generic dictionary independent of
roughness: the user can set a target BRDF roughness in real-time,
or make it vary spatially. Physical validity is also guaranteed at all
levels of scales by an accurate normalisation.

In summary, our contribution is as follows:

• We present a novel physically based BRDF that can be evaluated
in real-time to produce glinty effects.
• It is consistent with the microfacet BRDF of Cook and Torrance.

• It relies on a normalised patch-NDF which is evaluated in real-
time from a pre-computed dictionary.
• The dictionary does not depend on roughness, allowing for spa-

tial variations and roughness selection in real-time.
• Our model is compact (less than 1 MiB).

We first review the previous works on multiscale NDFs in Sec-
tion 2. After a brief overview of our method (Section 3), we de-
scribe our multiscale high-frequency NDF in Section 4. Then we
explain how to introduce spatial variations (Section 5) and present
our reflectance model (Section 6). Results and comparisons are dis-
cussed in Section 7.

2. Previous works

The specular part of the BRDF is generally defined by three
terms: 1) a micro-geometry model, i.e. microfacet distributions
(its theoretical framework was introduced in Torrance and Spar-
row [TS67]) usually represented by statistical normal distribution
functions (NDFs), 2) a masking/shadowing term and 3) a Fresnel
term. We focus on the first term and review single- and multi-scale
NDFs. Note that we do not review the many other, mainly spe-
cific representations, that are outside the scope of microfacet theory
like for example scratches [RGB16, VWH18, WVJH17], point jit-
tering in 3D grids [WB16], bi-directional texture functions [GK17]
or data-driven techniques.

Cook and Torrance [CT82] introduced a first physical BRDF to
computer graphics using the Beckmann distribution [BS63]. It is
based on a Gaussian parameterised by a roughness coefficient rep-
resenting the distribution of microfacet slopes. Trowbridge and Re-
itz [TR75] proposed a distribution of slopes on an ellipsoid, later
dubbed the GGX distribution by Walter et al. [WMLT07]. These
models have a single-scale and cannot represent glitter. Multi-scale
models are conversely able to represent sparkling surfaces. In the
following, we distinguish models based on explicit normal maps
and procedural algorithms.

Normal maps LEAN [OB10] and LEADR [DHI∗13] mapping es-
timate the slope mean and variance within the pixel footprint and
use them as parameters of a single lobe Beckmann NDF. The ap-
pearance of multi-scale smooth materials can be simulated, though
the P-NDF is only approximated. Han et al. [HSRG07, WZYR19]
use a mixture of one-lobe von Mises-Fisher distributions to in-
crease accuracy. However, the algorithmic complexity grows lin-
early with the number of lobes, so in practice there is a limita-
tion to about a dozen lobes, which is still not sufficient to rep-
resent glittery materials. The P-NDF [YHJ∗14] aims at comput-
ing the exact NDF within a pixel footprint P more accurately.
A 4D Bounded Volume Hierarchy (BVH), built from the normal
map, allows for fast querying of light reflecting normals. Yan et
al. [YHMR16] accurately approximate a normal map by a mix-
ture of 4D NDFs to accelerate renderings. Mixtures of Beckmann
distributions are used to improve BRDF normalisation [CCM18].
Extensions support multiple-scattering of lights within the normal
map [CCM19], analytic light integration [GGN18] and diffraction
effects [YHW∗18, KHX∗19]. Finally, Wang et al. [WHHY20] re-
duce memory consumption by using texture synthesis based on a
normal map sample.
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Procedural approach Explicitly storing very large normal maps
might become an issue. Jakob et al. [JHY∗14] generate microfacets
at runtime while traversing a procedural 4D hierarchy. They calcu-
late the ratio between the number of facets correctly oriented and
the total number of microfacets inside P . For all the previous cited
methods, the accurate P-NDF estimation entails high computation
cost and thus none of them is applicable to real-time rendering.
Some methods [AK16,WWH18] improve performance, but still not
sufficiently to permit high performance. Conversely, Zirr and Ka-
planyan [ZK16] reach real-time performance by making use of a
MIP hierarchy instead of a complex data structure. During P-NDF
evaluation, they go through the footprint cells of the MIP hierar-
chy and, for each, evaluate the total number of microfacets using
the cell area and a user-defined glint density. They also evaluate
the number of reflecting microfacets in a cell by sampling a bino-
mial distribution. For performance reasons, they approximate the
probability of the binomial distribution, not allowing their P-NDF
to be normalised, leading to energy leaks and no physical valid-
ity. Although they achieve interesting glittery appearances, their
specular lobe (Figure 2, right) does not converge to the lobe of
Cook and Torrance (Figure 2, middle) when the microfacet den-
sity is very high. The normalisation of their BRDF is not straight-
forward because it depends on several parameters such as viewing
direction, roughness and glint density. Our method also uses pro-
cedural NDFs and a MIP hierarchy. We replace the binomial sam-
pling by a normalised NDF evaluation to guarantee a physically
based BRDF. We thus avoid the previous issues (Figure 2, left),
yet maintaining real-time rendering performance. Another real time
physically-based stochastic glinty BRDF was recently proposed by
Wang et al. [WDH20]. They can handle environment maps, con-
trary to our method. However, their memory footprint exceeds 256
MiB whereas our data requires only 384 KiB. They handle only
isotropic roughness and cannot use roughness textures.

3. Overview

The main goal of our method is to efficiently render spatially dense
high-frequency NDFs to reproduce the appearance of glinty mate-
rials. This is a challenging task because 2D high-frequency distri-
butions are costly to store: naively, it requires to store high defini-
tion 4D fields, i.e. high-frequency NDFs on densely sampled sur-
face points. We propose a solution to this problem by introducing a
compact high-frequency NDF model, which can represent several
dozens of fine lobes. We use the slope space domain to represent
normals, which is common in microfacet theory. For example, both
GGX and Beckmann NDFs are based on Slope Distributions Func-
tions (SDFs). In this paper, all our NDFs are defined by SDFs.

Our model is illustrated in Figure 3:

(a) During rendering, we filter a procedural MIP hierarchy. Pro-
cedural meaning that each cell of the hierarchy does not ex-
plicitly store a SDF.

(b) Each cell index seeds a pseudo-random generator, which ran-
domly picks two 1D marginal distributions from a dictionary.

(c) The product of the two 1D marginal distributions yields a 2D
SDF. Randomness avoids repetition artefacts and apparent pe-
riodicity. Moreover, we significantly reduce the memory foot-
print compared to explicit storage of SDFs in hierarchy cells.

Our BRDF [CT82] [ZK16]

0.34

0

Figure 2: The standard BRDF of Cook and Torrance [CT82] (mid-
dle) is the reference for an infinite number of microfacets. We com-
pare the convergence of our model (left) and of the BRDF of Zirr
and Kaplanyan [ZK16] (right), both with a very high number of
microfacets. Top: rendering. Bottom: differences of radiance with
the reference (range from 0 to the maximum 0.34, false-coloured).

(d) To further increase SDF variety, still using a small dictionary,
a random rotation is applied to each SDF. It also avoids align-
ment artefacts.

(e) Scaling is applied to match a user-defined anisotropic rough-
ness.

(f) A weighted sum over the cells covered by the footprint pro-
duces the P-SDFs defined at a discrete LOD.

(g) Interpolation across the LOD results in the final multi-scale
P-SDF. The latter is linked with a microfacet-based BRDF to
compute local shading.

We first describe our multiscale high-frequency SDF (Section 4).
Next, we introduce the generation of spatial variations as well as the
procedural MIP hierarchy (Section 5). Lastly, we derive theP-SDF
and the BRDF model (Section 6).

4. Multiscale high-frequency SDF

4.1. Preliminaries

The microsurface is characterised by a statistical distribution of the
microfacets’ orientations. It can be defined as a distribution of mi-
cronormals ωm = (xm,ym,zm) (m for micronormal), the normal dis-
tribution function D(ωm) (NDF). Alternatively, it can be defined as
a distribution of microfacets’ slopes [Hei14]

m̃ = (xm̃,ym̃) =

(
−xm

zm
,
−ym

zm

)
, (1)

the slope distribution function P22(m̃) (SDF, m̃ means microslope).
Both are related:

D(ωm) =
P22(m̃)

(ωm ·ωg)4 , (2)

where ωg is the geometric normal of the surface (which should be
the mean of the micronormals).
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Figure 3: For each cell of a pixel footprint P on a MIP hierarchy (a) we randomly choose two 1D marginal distributions of slopes from
a multiscale dictionary (b), whose product yields a SDF (c). The SDF is then randomly rotated to increase the output SDF variety of the
dictionary (d). Finally, the SDF is scaled (e) to target a specified roughness. The weighted sum of the SDFs within P gives two P-SDFs,
defined for the two adjacent discrete LODs (f). By using the continuous LOD value, they are linearly interpolated, providing the P-SDF (g)
used in the microfacet BRDF.

To be physically valid, it is mandatory that distributions are nor-
malised. The projected area of the microsurface must be equal to
the macrosurface area (set to unit area for convenience)∫

Ω

(ωm ·ωg)D(ωm)dωm = 1, (3)

which is equivalent by substitution to∫
R2

P22(m̃)dm̃ = 1. (4)

P22(xm̃,ym̃)

P2−(xm̃)

P
−

2 (
y m̃

)

ym̃

xm̃

Figure 4: Our 2D SDF is the product of two 1D marginal distribu-
tions for the slopes xm̃ and ym̃. The marginal distributions are even,
so we only store the positive part of the function (blue frames).

4.2. Single scale SDF

Our mathematical expression of P22 is an independent joint prob-
ability density function, which is the product of two univariate
marginal distributions P2− and P−2 along the x and y-axis:

P22(m̃) = P2−(xm̃)P
−2(ym̃). (5)

A key property of this equation is that P22 is normalised if the
marginal distributions are both normalised.

In order to avoid the paradoxical case where the micronor-
mal mean is different from the geometric normal ωg [DHI∗13,
SHHD17], we use symmetric, i.e. even, marginal density functions.
This representation also allows us to halve storage, because in our
implementation, these 1D distributions are tabulated. We illustrate
Equation 5 and the symmetry of the distributions in Figure 4.

4.3. Multiscale SDF

In this Section we define and give the properties of our multiscale
NDF, and we propose an algorithm to generate several.

Definition By introducing the discrete hierarchy LOD parameter l
in equation 5, we define our 2D multiscale SDF

P22(m̃, l) = P2−(xm̃, l)P
−2(ym̃, l) (6)

as the product of two 1D multiscale marginal distributions
P2−(xm̃, l) and P−2(ym̃, l). The level ranges from l = 0 (finest
scale) to nLevels (coarsest scale). In practice, we set nLevels = 16,
since it experimentally represented a good compromise between
compactness and visual quality.

Finest LOD In order to be able to model few microfacets, it is
necessary for the finest LOD to have as few thin lobes as possible.
Due to equation 5 and the use of even marginal distributions, we
always have four lobes (Figure 4), even though pairs might overlap
or coincide (in an extreme case, when they are centered around 0).

Coarsest LOD To make our model compliant with an existing mi-
crofacet BRDF, we let it converge to the Cook and Torrance re-
flectance model. This implies that P22 converges to a Beckmann
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distribution P22
target as the number of microfacets increases. There-

fore, we enforce P22(m̃,nLevels) = P22
target(m̃).

We chose the Beckmann SDF as target because the Gaussian
is separable, i.e. it equals the product of its marginal distributions
(Equation 5). If the target SDF is isotropic, we have P2−

target = P−2
target,

which we denote as Ptarget for short. Distributions that are not sep-
arable are currently excluded (like the GGX distribution, see limi-
tation discussion).

Transition between adjacent LODs Since we use a MIP hierar-
chy, the number of lobes quadruples when we move from level l to
level l + 1. Consequently, at level l, the multiscale SDF is a mix-
ture of 4l+1 lobes and its marginal distributions are a mixture of
2l+1 lobes.

4.4. Generation algorithm

To generate a single multiscale SDF that enforces the previous
properties, we have to define consistent lobes for P2− and P−2

at all levels. We opted for Gaussian lobes with small standard devi-
ation. The positions (means) of the Gaussian lobes are obtained by
importance sampling of Ptarget: the first random sample defines the
single lobe at l = 0, the second random sample is added for l = 1,
etc. Figure 5 illustrates the algorithm and resulting convergence.

In our implementation, we fixed the following parameters, that
produce glints while converging in a reasonable number of levels:
the standard deviation of the Gaussian lobes is 0.02; the isotropic
roughness of the target distribution is αdict = 0.5; the number of
levels of details is nLevels = 16; the size of the tabulated generated
monoscale SDFs is 64.

4.5. Dictionary of marginal distributions

To render glints, spatial variations over the surface are required and
thus many different SDFs are necessary. We achieve this by build-
ing a dictionary of N marginal distributions Pi, as shown in Fig-
ure 6. The distributions are generated randomly with the previously
described algorithm (Section 4.4). The dictionary can be arbitrarily
large: the smaller N, the lower the memory footprint, whereas the
larger N, the more variety is obtained.

To control roughness and anisotropy of P22, we need to control
the roughness of the target marginal distributions in x and y direc-
tion independently. Instead of having one dictionary per axis and
one dictionary per roughness, which would require a lot of mem-
ory, we store a single dictionary, which is then rotated and scaled in
real-time, as explained in Section 5. This strategy allows us to keep
the memory footprint very low (less than 1 MiB).

5. Spatially-varying and multiscale SDF

To spatially vary the SDFs, we partition the surface into square
cells and assign a SDF each of them. To manage the LODs, we
use a MIP hierarchy, where each cell at level l + 1 represents four
adjacent cells at level l (Figure 3, a), as in a MIP pyramid. By using
the 2D cell coordinate s0, we can now define our spatially-varying
and multiscale SDF:

P22(m̃, l,s0) = P2−(xm̃, l,s0)P
−2(ym̃, l,s0). (7)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
l P

Ptarget

Figure 5: The multiscale marginal distribution P (bottom) con-
verges to a target distribution (top). Plots are restricted to R+ be-
cause we use even functions.

P0

Ptarget

Pi Pi+1 Pi+2 PN−1, . . . , , , , . . . ,

Figure 6: Dictionary of N multiscale marginal distributions. We
generate a collection of multiscale distributions Pi that converge to
the same target distribution Ptarget

At this point, we have to maintain the coherence between lev-
els and cell coordinates. The exact solution would be that the SDF
of level l + 1 equals the average of four adjacent SDFs of level l.
However, it would require to precompute all the possible combi-
nations in the dictionary, and lead to a combinatorial explosion as
l grows. Instead, we use the same approximation as Zirr and Ka-
planyan [ZK16]: a SDF at level l + 1 retrieves the lobes of only
one SDF at level l. The number of lobes quadruples, not due to the
merging of four cells, but due to the change of level in the dictio-
nary (Section 4.5).

5.1. Coherent indexing of cells

Equation 7 is evaluated by randomly picking P2− and P−2 in the
dictionary using s0 as seed. To maintain the coherence at the tran-
sition from l to l + 1, we need a coherent indexing, as shown in
Figure 7. For given surface position s and level l, the cell coordi-
nate is

s0 =
⌊ s

2l

⌋
2l . (8)

Zirr and Kaplanyan [ZK16] also use coherent indexing, but for an
infinite number of LODs.
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regular indexing

0 1 2 3 4 5 6 7
0 1 2 3

0 1
0

coherent indexing

0 1 2 3 4 5 6 7
0 2 4 6

0 4
0

l = 0
l = 1
l = 2
l = 3

s0 =
⌊

s
2l

⌋
s0 =

⌊
s
2l

⌋
2l

Figure 7: Coherent cell indexing in the hierarchy. Conversely to
the regular indexing (left), the coherent indexing (right) preserves
one index out of four when transiting from l to l +1.

5.2. Improving the variety by rotating the SDFs

Rich spatial variations are essential to avoid rendering artefacts,
such as the apparent alignments in Figure 8 top left. A dictionary
containing N marginal distributions can generate N2 SDFs. We fur-
ther increase the variety without additional storage by applying a
random rotation Rθ to the SDF: a random angle θ uniformly dis-
tributed in [0;2π[ is generated from the cell index s0. The result
on a single SDF is illustrated in Figure 3 (d). The result on the
surface is illustrated in Figure 8 bottom: axis-aligned artefacts are
removed; slight circle artefacts appear but the quality is dramati-
cally improved for the same dictionary size N. The rotated SDF is
evaluated by inverse rotation on the slope parameter:

P22
θ (m̃, l,s0) = P22(R−1

θ
m̃, l,s0). (9)

Note that the rotation preserves the normalisation (Equation 4).
If the target distribution P22

target is isotropic, then P22
θ also con-

verges to P22
target. We have been inspired by the area light integration

method, which uses linearly transformed distributions [HDHN16].
Rotations have also been used to match BTF data [WDR11].

5.3. Controlling the roughness by scaling the SDFs

Controlling the roughness is necessary to adjust the material ap-
pearance. We allow the user to specify an arbitrary roughness
α = (αx,αy) of an anisotropic Beckmann distribution (target). As
in the previous section, we linearly transform the slope parameter
instead of the functions, which allows to keep a single dictionary.
Let αdict be the target roughness the dictionary has been built with.
Let the scaling matrix be:

Sα =
1

αdict

[
αx 0
0 αy

]
. (10)

We define our complete SDF model as

P22
θα(m̃, l,s0)=

α
2
dict

αxαy
P22(S−1

α R−1
θ

m̃, l,s0) (11)

which is spatially-varying (s0), multiscale (l), rotated (θ), and con-
trollable with anisotropic roughness (α). The normalisation factor
preceeding P22 is the Jacobian of Sα, which ensures Equation 4
(normalisation) to remain fulfilled.

N = 48 N = 96 N = 192

w
ith

ro
ta

tio
ns

w
ith

ou
tr

ot
at

io
ns

Figure 8: Increasing the number N of marginal distributions in the
dictionary reduces rendering artefacts, such as unrealistic low or
high microfacet density along lines (top) or circles (bottom). Ap-
plying random rotations (bottom) to cell-dependent SDFs produces
better results than SDFs without random rotations (top).

6. Reflectance model

The microfacet theory allows us to define a physically based re-
flectance model from a P-SDF. We will defined it before introduc-
ing the definition of our multiscale BRDF.

6.1. Patch-SDF based on a MIP hierarchy

The patch P refers to the pixel footprint (green ellipse Figure
3, a) or the ray footprint. To approximate the real footprint of a
pixel with a parallelogram or a Gaussian, ray differentials are com-
monly used [Ige99]. In our work, we use a Gaussian representation
WP [Hec89], but other weighting functions are also valid with our
method.

When using a MIP hierarchy in combination with our scaled, ro-
tated, spatially-varying and multiscale SDFs, the P-SDF is simply
the result of the filtering of the MIP hierarchy:

P22
P (m̃) =

blPc+1

∑
l=blPc

w(l) ∑
s0∈P

P22
θα(m̃, l,s0)WP (l,s0), (12)

where lP is the continuous LOD associated to P . The weighting
functions are normalised, i.e. w(blPc) +w(blPc+ 1) = 1 for the
levels and ∑s0∈PWP (s0, l) = 1 for the positions. As for the case
without patch (Equation 2), we use the slope-to-normal transfor-
mation to go back to normal space, and obtain the P-NDF:

DP (ωm) =
P22
P (m̃)

(ωm ·ωg)4 . (13)

Our definition (Equation 12) is normalised because the distributions
P22

θα(m̃, l,s0) integrate to one over the slope domain.
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6.2. Multiscale microfacet based BRDF

The patch-BRDF fP of the pixel footprint’s material, characterised
by DP , is

fP (ωo,ωi) =
F(ωo,ωh)G2(ωo,ωi,ωh)DP (ωh)

4(ωo ·ωg)(ωi ·ωg)
, (14)

where ωo and ωi are the observation and incident directions, and
ωg is the geometric normal. The term ωh refers to the half vector of
reflection, F is the Fresnel factor, and G2 is the masking-shadowing
function. Our P-NDF does not have analytic Smith masking-
shadowing function [Smi67], so we use the V-cavity masking-
shadowing function [CT82] which does not rely on the shape of
the P-NDF:

G2(ωo,ωi,ωm) = G1(ωo,ωm)G1(ωi,ωm) (15)

with masking G1(ωo,ωm) and shadowing G1(ωi,ωm). The V-
cavity masking function is

G1(ω,ωm) = H(ω ·ωm)min
(

1,2
(ωm ·ωg)(ω ·ωg)

(ω ·ωm)

)
(16)

where H is the Heaviside function.

7. Results

In this section, we describe the user parameters and the practical
implementation of our BRDF. We also evaluate its results, quality
and performance, and discuss the limitations of our model.

7.1. User parameters

An artist can control the glinty material appearance by changing
the following parameters:

• Roughness αx and αy control the size of the area where almost
all glints are located on the surface. Our multiscale BRDF con-
verges to the BRDF of Cook and Torrance with αx and αy.
• Microfacet density ρ is the number of specular microfacets per

unit surface area. Material appearance is glintier with small val-
ues and smoother with high values.
• Microfacet relative area β gives the percentage of the surface

covered by our glinty BRDF. Set to one this yields rough plastics
or metals, while small values yield materials such as stone with
sparkling minerals. Note that β acts as a mask on the surface, and
it is independent of ρ.

Please see the supplementary video for the demonstration of the
real-time user control of these parameters.

We also provide more technical parameters:

• Density randomisation ζ randomly changes the density of mi-
crofacets around ρ. These random variations reduce rendering
artefacts when the number N of marginal distributions in the
dictionary is low. Zirr and Kaplanyan [ZK16] also use a simi-
lar parameter.
• Maximum anisotropy γ limits the ratio between major and mi-

nor axis of the pixel footprint and thus the number of cells to
go through during P-SDF evaluation. The specular lobes are re-
spectively coarse or fine according to low or high values.

7.2. Validation of our model

To validate our patch microfacet BRDF fP , we use the weak white
furnace test [Hei14]. Without the shadowing G1(ωi,ωm) and Fres-
nel F terms, our BRDF integrates to one:∫

Ω

G1(ωo,ωh)DP (ωh)

4(ωg ·ωo)
dωi = 1, (17)

because our P-NDF is normalised (i.e., fulfills Equation 3), aver-
ages to the geometric normal ωg and is symmetrical as we use even
density functions. This test guarantees that our BRDF does not cre-
ate energy and is, therefore, physically based. Figure 9 shows nu-
merical integration of equation 17 for various values of parameters
α, ρ, ζ and ωo: the relative error is below 0.003, except for a very
low α at grazing angle (0.012 error).

Note that we do not use the non-weak white furnace test, as we
only model the first scattering event; the rays that bounce multi-
ple times on the microsurface are removed from the BRDF by the
shadowing function. Our formulation also respects the Helmholtz
reciprocity, i.e., fP (ωo,ωi) = fP (ωi,ωo).
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Figure 9: Numerical validation of our BRDF with the weak white
furnace test. Equation 17 is plotted against different parameters.
Different observation polar angles θo (between ωo and ωg) are
shown: dotted line for θo = 0; dashed line for θo = π/4; solid line
for θo = 1.56 (grazing angle).

7.3. Implementation

We have implemented our method in OpenGL 4.5 and in pbrt-v3
[PJH16] to compare it with an offline and photo-realistic method.
In both cases, the implementation is similar. We provide pseudo-
code and implementation details in appendix A. Our supplemental
materials contain our implementation and the dictionary generator.

Dictionary The marginal distributions Pi of the dictionary (Fig-
ure 6) are stored in 1D tables of size 64, which provides enough
precision to represent several distinct narrow lobes. The standard
deviation of the lobes is set to 0.02 in our implementation. The do-
main of the 1D tables is [0,4αdict/

√
2], which corresponds to four

times the standard deviation of P22
target, allowing the representation

of almost all the density of the distribution. All our marginal distri-
butions are generated and normalised assuming linear interpolation
between discrete values. In all our scenes, we use N = 192 marginal
distributions in the single dictionary, leading to artefact free render-
ings (Figure 8). Generating and normalising 192 distributions takes
30 s multi-threaded on a 2.20 GHz Intel Core i7-8750H CPU (12
threads).
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7.4. Renderings

Sponza In Figure 1, left, all the materials use our glinty multiscale
BRDF, with different parameters. The floor, the columns, the arches
and the vases are rough rocks composed of a low proportion of
sparkling minerals. In the real world, this material has strong flick-
ers at high zoom levels and little or no flicker at low zoom levels,
as in our rendering. The sparkling fabrics are less rough and have
a larger microfacet relative area. The metallic curtain rods produce
no glint because the microfacet density is high.

Screen Plane In Figure 1, right, we show that microfacet densities
can vary along the surface and that our BRDF converges to the
BRDF of Cook and Torrance. The roughness is isotropic and the
microfacet logarithmic density linearly increases from left to right.

Suzanne In the off-line BRDF of Yan et al. [YHMR16], the P-
NDF is normalised, as in our method. Consequently, we achieve
similar results (shown in Figure 10), where glint intensities are sim-
ilar. Since the P-NDF of Zirr and Kaplanyan [ZK16] lacks nor-
malisation, the appearance is darker in specular regions. This scene
also shows that our method can handle anisotropic roughness and
simulate the appearance of rough plastics.

Our BRDF [YHMR16] [ZK16]

Figure 10: Comparison with an offline physically-based model.
Suzanne is rendered with different microfacet BRDFs with the same
roughness and specular parameters. Our model (left) has glint in-
tensities similar to those of Yan et al. [YHMR16] (middle), whereas
the method of Zirr and Kaplanyan [ZK16] gives darker appear-
ances (right). We handle isotropic (top) and anisotropic (bottom)
surface roughness.

2 CV In Figure 11, we demonstrate that non-uniform glint coloura-
tion can be modelled with our BRDF to simulate the appearance of
car paint. For each cell index s0, we randomly pick a colour out of
a user-defined table and we multiply it by the SDF. In this scene,
we mix our BRDF with the BRDF of Cook and Torrance. The for-
mer simulates the metallic flakes, the latter models the transparent
varnished of the car paint. The two BRDFs combine well, and the
mixture gives a realistic result, without post-processing, because
our BRDF is physically based.

Parquet Since our BRDF handles arbitrary roughness on-the-fly,
by scaling the distributions (Section 5.3), we can use roughness
maps as shown in Figure 12. The roughness map modulates the
shape of the highlights, allowing non elliptical specular lobes. In
this scene, we use three point lights with different intensities.

Brushed aluminium Stretching of the microsurface allows for
anisotropic glints, as demonstrate in Figure 13. Brushed metal with
elongated grooves can therefore be modelled. In our implementa-
tion, we stretch the surface position s = (xs,ys) by 1,000 along xs
and set the maximum anisotropy γ of the pixel footprint to 8.

Table 1 details the parameters used in our scenes. The maxi-
mum anisotropy of P is always set to 4, except in the Brushed
Aluminium case. There is no post-effect applied to the rendering.
Please see the temporal versions of the Sponza, 2 CV and Parquet
scenes in the attached video.

Scene αx αy ln(ρ) β ζ

Sponza (stones) 1 1 20 0.01 2
Sponza (fabrics) 0.3 0.3 20 0.2 2
Sponza (metal) 0.1 0.1 26 1 2
Screen plane 0.5 0.5 [20,35] 1 2
Suzanne (top) 0.5 0.5 21 1 0.01

Suzanne (bottom) 0.5 0.1 21 1 0.01
2 CV 0.1 0.1 23 0.3 0.01

Parquet T (s) T (s) 21 1 0.01
Brushed alu. 0.5 0.1 20.6 0.9 0.01

Table 1: Parameters used in our scenes. The notation [a,b] means
that the parameter is linearly interpolated along the surface be-
tween a and b. The notation T (s) denotes textured values.

Scene #Triangles Our BRDF [ZK16] [CT82]
Sponza 262,267 3.0 2.0 0.7

Screen plane 2 2.5 1.3 0.4
2 CV 704,527 9.2 4.4 2.0

Parquet 2 6.4 2.5 0.6
Brushed alu. 16,128 1.7 0.7 0.4

Table 2: Rendering times in milliseconds per frame using our
OpenGL implementation. We compare the performance of our
BRDF, the BRDF of Zirr and Kaplanyan [ZK16], and the BRDF
of Cook and Torrance [CT82].

7.5. Performance and memory requirement

Performance The average rendering times (ms/frame) of the dif-
ferent scenes are summarized in Table 2, with our BRDF eval-
uated using an NVIDIA GeForce 2080 RTX GPU. For compar-
isons, we also give timings for the BRDF of Zirr and Kaplanyan
[ZK16] and Cook and Torrance [CT82]. Measurements are made
for 1920× 1080 image resolution using forward shading (not de-
ferred shading). Consequently, the rendering times include shad-
ing of occluded pixels due to overdraw in large scenes. Rendering
times increase with the screen coverage of glints, which itself in-
creases with the relative microfacet area β and roughness values α.
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Figure 11: A 2 CV is rendered with our BRDF using coloured glints to simulate car paint.

Figure 12: A varnished parquet made from dark wood is rendered with our glinty BRDF. In this scene, we use three point lights with three
different intensities and also a roughness map to modulate the highlights along the surface.

Figure 13: The appearance of brushed aluminium can be modelled
with our BRDF by stretching the surface position.

In the 2 CV and Parquet scenes, rendering times are more important
than the other scenes because we use three point lights instead of
one. Compared to Zirr and Kaplanyan, the rendering time overhead
varies from 50 % to about 156 % in the worst case. Our tests show
that the memory traffic between the compute units and the cache
causes the performance reduction.

Memory requirement As described in Section 4.5, we store a dic-
tionary in memory. For this purpose, we allocate a single OpenGL
1D array texture with 3-component half-float format (16 bits per
component). Normalised integers with 8 bit per component cannot
handle the large range of values of the distributions, whereas half-
float precision is enough. For 16 levels and 192 marginal distribu-
tions, the number of 1D texture is 1,024, with three distributions
per texture. Consequently, the memory requirement of our BRDF
is 384 KiB.
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7.6. Limitations and future works

To be physically based, our BRDF cannot use the Smith model.
However, if the V-Cavity is not the standard model in the rendering
engine, the Smith masking-shadowing function of the target distri-
bution can be used without resulting in major rendering artefacts.
The approximated SDF coherence between grid levels results in
progressive introduction of new glints when zooming in and out. In
most situations, this is not really noticeable, except at high zoom
levels.

Not all distributions can be represented by our model. The GGX
distribution is not supported, and we will investigate this limita-
tion in a future work by looking for a good approximation, which
fits our separable model. In addition, the anisotropic SDFs are al-
ways axis-aligned. Another limitation is that P-NDFs cannot be
controlled by normal maps or other explicit surface models.

We only model single scattering of light within the microsur-
face. Pre-computed normalisation factors of BRDFs [CK17,Tur19]
cannot be used because we should store one factor per roughness
and per marginal distribution pair in the dictionary (N2 pairs). Fi-
nally, we did not yet propose an importance sampling scheme of
our procedural NDF that we leave to future work. Therefore, area
and environment maps are not supported yet.

8. Conclusion

We have proposed a novel physically based BRDF designed for
real-time rendering of glints. To the best of our knowledge, no other
method unifies, as we do, compactness, real-time performance and
physical validity. Our method is procedural and uses a single and
compact dictionary independent of the surface roughness. Glinty
appearances can be reproduced, such as sparkling rock or fab-
ric, rough metal and plastic, car paint and brushed metal. The re-
flectance model parameters can be controlled in real-time or var-
ied across the surface, e.g. by using textures. Our BRDF matches
well with the microfacet theory and is consistent with the BRDF
of Cook and Torrance, and its physical validation is proven by the
weak white furnace test. We have also provided a detailed pseu-
docode that allows implementing the theoretical model.
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Appendix A: Implementation

We provide a pseudo-code with practical details. Algorithm 1 eval-
uates our glinty BRDF by computing the pixel footprint P , the
LOD and the P-SDF. The discrete P-SDF (Algorithm 2) averages
the SDFs (Algorithm 3). Most parameters defined in Section 7.1
are used in Algorithm 3:

• The microfacet density ρ allows the computation of a distribu-
tion LOD ldist which replaces the hierarchy LOD l in Equation
11. We first calculate the target number of microfacets n in a cell
with the discrete LOD blc and the microfacet density ρ (Alg. 3,
line 5). We know that the current number of lobes (microfacets)
at level l is 4l+1, as we have four lobes at LOD zero. We can
deduce that ldist =

log(n)
2 log(2) is the distribution level corresponding

to the user-defined microfacet density (Alg. 3, line 6).

• We use the microfacet relative area β in combination with a uni-
form random number Uβ to discard cells (Alg. 3, line 4).
• The density randomisation ζ is the standard deviation of a

normal distribution N (ldist,ζ
2), centred around the distribution

LOD ldist. We sample the normal distribution using a pseudo ran-
dom number Uζ to get a randomised ldist (Alg. 3, line 8).
• Finally, we can introduce glint colour variations by using a

colour table with Nc colours (Alg. 3, lines 12 and 19).

Algorithm 1: Evaluation of fP (ωo,ωi) (Eq. 14)

1 ωh← ωo+ωi
||ωo+ωi||

2 h̃← normalToSlope(ωh) // Eq. 1
3 P ← computePixelFootprint()
4 P ← clamp(P,γ) // Clamp pixel footprint eccentricity
5 minorLength← minorLength(P) // Get P minor length
6 l←max(0,nLevels−1+ log2(minorLength)) // Get LOD
7 w← l−blc // Get LOD weight
8 P22
P (h̃)← lerp(P22

bPc(blc, h̃),P
22
bPc(blc+1, h̃),w) // Eq. 12

9 // Calls Alg 2

10 DP (ωh)←
P22
P (h̃)

(ωh·ωg)4 // Eq. 13

11 fP (ωo,ωi)← F(ωo,ωh)G2(ωo,ωi,ωh)DP (ωh)
4(ωo·ωg)(ωi·ωg)

Algorithm 2: P22
bPc(blc, h̃) – P-SDF for a discrete LOD

1 P22
bPc← 0

2 foreach s0 ∈ P do
3 P22

bPc← P22
bPc+P22

θα(h̃, l,s0)WP (blc,s0) // Calls Alg. 3
4 end

Algorithm 3: P22
θα(h̃, l,s0) (Eq. 11)

1 s0← s02l // Coherent indexing (Eq. 8)
2 rng.Seed(s0) // Seed pseudo random generator
3 Uβ← rng.UniformFloat()
4 if Uβ > β then return 0

5 n← 22blc

22(nLevels−1) ρ // Number of microfacets in a cell

6 ldist←
log(n)

2 log(2) // Continuous distribution LOD

7 Uζ← rng.UniformFloat()
8 ldist← sample(Uζ,N (ldist,ζ

2)) // Density randomisation
9 ldist← clamp(round(ldist),0,nLevels) // Clamp dist. LOD

10 if ldist = nLevels then return P22
target(h̃,αx,αy)

11 Uc← rng.UniformFloat()
12 C← colourTable[NCUc] // Coloured glints
13 Ur← rng.UniformFloat()
14 R−1

θ
← computeRotationMatrix(θ← 2πUr)

15 S−1
α ← computeScaleMatrix(αx,αy,αdict) // Eq. 10

16 h̃← S−1
α R−1

θ
h̃ // Scale and rotation of the slope h̃

17 (U1,U2)← rng.UniformFloat()
18 (i, j)← (bNU1c,bNU1c) // Get two marginal distributions

19 P22
θα(h̃, l,s0)← Pi(xh̃, ldist)Pj(yh̃, ldist)

α
2
dict

αxαy
C // Eq. 11
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