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Hello everyone, my name is Xavier Chermain. I am a postdoctoral researcher at the
University of Strasbourg in France, and I will present our paper Procedural Physically
based BRDF for Real-Time Rendering of Glints. This work is the result of a collaboration
with the Karlsruhe Institute of Technology.
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04 Introduction

Photorealism is more and more present in real-time rendering engines. For example, here,
we have several different realistic materials that have been rendered in real-time with the
Filament physically based engine.
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04 Introduction

The race for photorealism pushes the modeling of complex materials, such as glittering
materials. Glittering materials have reflectance distributions with high frequency. They
have many lobes.
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04 Introduction

In our work, we propose an energy conserving reflectance model that models glittering
materials in real-time. Our model converges to the standard Cook-Torrance model.
Finally, the model is compact (less than 1 MiB of data).
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04 Introduction

Note that we have improved our reflectance model in two subsequently published works.
We have first tackled the issue of glint aliasing in real-time and normal map filtering
with glints. Then, we have proposed an importance sampling scheme for our glittering
reflectance model allowing efficient glint rendering in Monte Carlo renderers. However, in
this presentation, I will focus on our original method accepted to Pacific Graphics 2020.
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04 Related work

Reflectance models simulate the scattering of light in contact with microgeometry. It is
widespread in rendering to model this microgeometry with a normal distribution func-
tion, abbreviated NDF. This model is much more compact than explicitly storing the
microgeometry of the surface.
Two NDFs are commonly used: the Beckmann NDF, based on a Gaussian, and the GGX
distribution, which is the NDF of an ellipsoid.
These NDFs are single-lobed and therefore do not allow to simulate glint.
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04 Related work

Glittering materials have NDFs that have hundreds of lobes, and these NDFs must spa-
tially vary. An excellent way to get both properties is to use a normal map that represents
the microgeometry. In this case, we need to compute the NDF in the pixel footprint P,
which we call the P-NDF. This P-NDF is multi-level, high frequency, and spatially vary-
ing. Yan and colleagues propose an efficient method to compute the P-NDF, but their
method is too expensive for real-time.
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04 Related work

Zirr and Kaplanyan simulate glittering appearances in real-time with a procedural P-NDF.
Their algorithm does not consume memory, and the model parameters can vary along the
surface. However, their model does not conserve energy. Wang and colleagues propose
an energy-conserving model, but the memory consumption exceeds 250 MiB, and the
parameters cannot spatially vary. We also use a procedural approach, but our memory
consumption is lightweight, our model parameters spatially vary, and our model conserves
energy.
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04 Related work

Since the beginning, I have been talking about normal distributions, abbreviated NDF.
Their domain is 3D; it is the domain of the hemisphere. To drop a dimension, we can
work in the slope space, which is 2D. In this case, we have a Slope Distribution Function,
abbreviated SDF. In the following, we will see how to generate procedural SDFs.
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04 Overview

Now I’m going to give you an overview of our method. We have a virtual camera, and
we want to calculate the amount of light energy that arrives on the middle pixel. This
energy depends on the microgeometry, and therefore the SDFs contained within P.
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04 Overview

To bound the computation times, the surface is subdivided with cells, and cells are in a
MIP hierarchy. The size of P allows us to access a continuous level of detail, abbreviated
LOD. Here, the LOD is 0.5. The two adjacent discrete LODs always have a constant
number of cells within the pixel footprint P.
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04 Overview

We procedurally construct a SDF for each cell by randomly selecting two 1D distributions
contained in a dictionary.
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04 Overview

The tensor product of these two 1D distributions gives a 2D distribution with several
lobes.
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04 Overview

To avoid lobe alignments, we apply a random rotation.
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04 Overview

To control the roughness of the material, we apply a scale.
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04 Overview

The average of the cell distributions gives a P-SDF at a discrete LOD.
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04 Overview

We do the same for the lower discrete LOD.
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04 Overview

To have smooth transitions when zooming, we linearly interpolate the P-SDFs at the
adjacent discrete LODs. The resulting P-SDF is used to calculate the reflectance of the
material.
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04 Multi-level and multi-lobe SDF

I will now talk about the procedural generation of high-frequency multi-level SDFs from
a set of 1D distributions.
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04 Multi-level and multi-lobe SDF

In our method, we define our 2D SDF as the tensor product of two 1D SDFs. These
1D distributions will be tabulated and stored in memory. In order to have symmetric
distributions and divide the storage by two, the 1D distributions are even functions.
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04 Multi-level and multi-lobe SDF

Since we are using a MIP hierarchy, the SDFs are multi-level. The minimum number of
lobe at the lowest level is one in 1D, and therefore four in 2D. At the highest level, the
distribution is a Gaussian, because the Gaussian is separable. The number of lobes is
multiplied by two in 1D to go from level l to level l+1. In 2D, the number of lobes is
therefore multiplied by four.
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04 Multi-level and multi-lobe SDF

To generate multi-level SDFs that converge to a target distribution, we importance sample
the target distribution to place tiny lobes. The aggregation of the lobes allows converging
to the target distribution.
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04 Multi-level and multi-lobe SDF

We are running N times the generation algorithm to have N different 1D multi-level
distributions. This set is called the dictionary.
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04 Spatially varying multi-level SDF

So, the dictionary is multi-level. The distributions of level 0 are used by the cells of LOD
0.
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04 Spatially varying multi-level SDF

The distributions of level 1 are used by the cells of LOD 1.
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04 Spatially varying multi-level SDF

Note that with our dictionary, the number of lobes is multiplied by four when going from
LOD l to LOD l+1. This result is expected as we use a MIP hierarchy.
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04 Spatially varying multi-level SDF

We also expect that the lobes of a level l are also present at a level l + 1 to ensure con-
sistency between LOD. To partially accomplish this, the indexing of the cells is consistent
between levels.
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04 Spatially varying multi-level SDF

Cell indices are used to randomly select distributions, so it is crucial to raise some indices
of LOD l to LOD l+1, as in this case. So, at LOD 1, cell indices are increased by two.
At LOD 2, cell indices are increased by four, and so on.
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04 Spatially varying multi-level SDF

Now I’ll show you what happens if we don’t apply random rotations to the SDFs.



18

Random rotations
With random rotationsWithout random rotations

18

Random rotations
With random rotationsWithout random rotations

20
21

-1
2-

04 Spatially varying multi-level SDF

We have glint alignments with few distributions in the dictionary, as the lobes are all
aligned in the x and y directions. Random rotations per cell remove these alignments,
which improves the rendering quality.
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04 Spatially varying multi-level SDF

Now I’ll talk about scaling.
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04 Spatially varying multi-level SDF

Scaling allows controlling the variance of the target distribution, which allows controlling
the roughness of the material without having to regenerate and store another dictionary.
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04 Spatially varying multi-level SDF

Controlling the roughness allows you to control the area covered by glint. Here, a scaling
of 0.5 allows reducing by two the area covered by glint.
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04 Reflectance model

After averaging cell dependant SDFs, and interpolating the two P-SDFs at adjacent
discrete LODs, we end up with a P-SDF.
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04 Reflectance model

The P-SDF is converted to P-NDF using the slope-to-normal transformation.
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04 Reflectance model

Then the distribution of normals is converted to bidirectional reflectance, that is, to
BRDF.
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04 Reflectance model

We use a microfacet BRDF with V-cavity masking. So, we fit into the Cook and Torrance
model.
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04 Reflectance model
User parameters

I will now discuss the user parameters of our BRDF. As with the Cook and Torrance
model, we can control the roughness of the material. The rougher the material, the
steeper the slopes that make up its micro-geometry. (Window switch). Here, I lower
the roughness, and therefore the area where the glints are is smaller. (Window switch)
Unlike the Cook Torrance model, we can also control the density of microfacets per
square meter. The higher the density, the more microfacets per square meter. (Window
switch) We converge to a Cook and Torrance specular lobe if I increase this parameter.
If I lower it, we start to see individual microfacets. (Window switch) Finally, we also
propose to control the relative area of the microfacets. This parameter is a mask, and if
its value is low, the glints are scattered. (Window switch). So, if I lower the microfacet
relative area, we get scattered glints.
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04 Renderings

Results: Sponza

Now I’ll show you some animations. Here we have the Sponza scene, where the stones
have glittering minerals, visible only if we are close to the material. We also have glitter
curtains with a much higher relative microfacet area than the stone.
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04 Renderings

Results: 2 CV

Here we have a deux chevaux. We use our glittering BRDF to model metallic paint.
Here, the glitters are randomly colored to simulate iridescence cheaply.
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04 Renderings

Results: Varnished parquet

Since our algorithm is procedural and a dictionary can be used for several roughnesses,
our method is compatible with roughness maps. A roughness map allows modulating the
shape of the specular lobes on a surface, as here with parquet having a spatially varying
roughness.
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I Rendering times: ms/frame
I NVIDIA GeForce 2080 RTX GPU
I Forward shading (not deferred shading)
I Rendering times ∝ glint coverage on the screen ∝ roughness and relative

area of the microfacets

Scene #Triangles Our BRDF Zirr and Kaplanyan Cook and Torrance
Sponza 262,267 3.0 2.0 0.7
2 CV 704,527 9.2 4.4 2.0

Parquet 2 6.4 2.5 0.6
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04 Performance

Performance

Now I will talk about performance. The rendering time is proportional to the glint
coverage on the screen, which is proportional to the roughness and the relative area of
the microfacets. The Sponza scene, takes on average 3 ms to render an image with our
method. It takes 2 ms to render an image with the non-physical-based glittering BRDF of
Zirr and Kaplanyan. It takes 0.7 ms with the non-glittering BRDF of Cook and Torrance.
If we look at the performance for the other scenes, we have a rise of computation times
between 50 % and 156 % compared to Zirr and Kaplanyan.
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Implementation: dictionary
storage

Now I will address the subject of the dictionary storage. Each 1D distribution is stored
in an array of size 64. There are 16 distribution levels and 192 multi-scale distributions
in the dictionary. The memory cost is therefore 384 KiB. Generating and normalizing the
distributions takes approximately 30 s. The generation is done only once because once a
dictionary is generated, it allows for multiple appearances and roughnesses.



Implementations

I OpenGL:
https://github.com/ASTex-ICube/real_time_glint

I WebGL:
http://igg.unistra.fr/People/reproctex/Demos/Real_Time_Glint/

I Shadertoy:
https://www.shadertoy.com/view/wstcRH

I pbrt-v3:
https://github.com/ASTex-ICube/importance_sampling_glint

I Dictionary generator:
https://github.com/ASTex-ICube/real_time_glint_dictgenerator
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Implementations

Our algorithm is relatively simple. We implemented it with OpenGL, WebGL, Shadertoy,
and the pbrt-v3 renderer. The code of the dictionary generator is also available.

https://github.com/ASTex-ICube/real_time_glint
http://igg.unistra.fr/People/reproctex/Demos/Real_Time_Glint/
https://www.shadertoy.com/view/wstcRH
https://github.com/ASTex-ICube/importance_sampling_glint
https://github.com/ASTex-ICube/real_time_glint_dictgenerator
https://github.com/ASTex-ICube/real_time_glint
http://igg.unistra.fr/People/reproctex/Demos/Real_Time_Glint/
https://www.shadertoy.com/view/wstcRH
https://github.com/ASTex-ICube/importance_sampling_glint
https://github.com/ASTex-ICube/real_time_glint_dictgenerator
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Limitations

I will now talk about the limitations. Currently, Smith masking is not handled. There is
also approximate lobe consistency between LODs. There is no convergence to the GGX
distribution, and we only model a light bounce in the microsurface.
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I Supports roughness or microfacet density textures
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Conclusion

To summarize, in this work, we proposed a physically based and procedural BRDF ded-
icated to real-time glint rendering. The pre-computations are highly compact. Our
method is compatible with roughness textures and microfacet density textures. Our
model is consistent with the standard model of Cook and Torrance. Finally, our code
and data are open. Merci, thank you for your attention. If you have questions, don’t
hesitate.
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