Importance Sampling of Glittering BSDFs based on Finite Mixture Distributions (Supplemental Material 1/2) Convergence Comparisons

X. Chermain ${ }^{1}$, B. Sauvage ${ }^{1}$, J.-M. Dischler ${ }^{1}$, C. Dachsbacher ${ }^{2}$
${ }^{1}$ Université de Strasbourg, CNRS, ICube UMR 7357, France
${ }^{2}$ Institute for Visualization and Data Analysis, Karlsruhe Institute of Technology, Germany

1 Protocol

1.1 Convergence test

We investigate the convergence of the importance sampling procedure and use a Monte Carlo (MC) estimator with importance sampling to solve the equation

$$
\begin{equation*}
\int_{\Omega} f\left(\omega_{o}, \omega_{i}\right)\left|\omega_{i} \cdot \omega_{g}\right| \mathrm{d} \omega_{i} \tag{1}
\end{equation*}
$$

which corresponds to a white environment, i.e., $L\left(\omega_{i}\right)=1$, as in the white furnace test. The exact value of this integral is the average value of the shadowing term $G_{1}\left(0 \leq G_{1} \leq 1\right)$.

1.2 Raw data

We realise many estimations of Equation 1, i.e. many realisations r of the MC estimator. We collect each estimation as the number of samples N increases. Our raw data is thus a set of curves

$$
\begin{equation*}
F_{r}\left(N ; \theta_{o}, \alpha, K\right)=\frac{1}{N} \sum_{j=1}^{N} \frac{f\left(\omega_{o}, \omega_{i_{j}}\right)\left|\omega_{i_{j}} \cdot \omega_{g}\right|}{\operatorname{PDF}\left(\omega_{i_{j}}\right)} \tag{2}
\end{equation*}
$$

where

- N is the number of samples,
- r is the index of a realisation, i.e. one estimation / one random seed,
- θ_{o} is the incidence angle corresponding to ω_{o},
- K is the number of microfacets in the footprint,
- $\operatorname{PDF}\left(\omega_{i}\right)$ is the distribution used for sampling the incident direction ω_{i}. In the graphs below, green curves are obtained by sampling the multi-lobe component of the BSDF (our method), while red curves are obtained by sampling the mono-lobe approximation of the BSDF (previous method), namely the limit of $f\left(\omega_{o}, \omega_{i}\right)$ as $K \rightarrow \infty$.

1.3 Parameters

- $1 \leq r \leq 1,000$ realisations.
- $1 \leq N \leq 10,000$ samples.
- $\theta_{o} \in\{0,1 ., 1.5\}$
- $\alpha \in\{0.1,0.25,0.6\}$
- $K \in\{15,148,2,379,41,624,166,496\}$

1.4 Pointwise boxplot

Each graph plots the estimator against N, for a fixed set of parameters θ_{o}, α, K. We use semi-log graphs because of the wide range for N. Plotting F_{r} for all realisations r would be illegible. Aiming at a statistically more representative plot, we use pointwise boxplots, i.e., we draw curves corresponding to pointwise quartiles:

- $F_{0 \%}$ and $F_{100 \%}$ are the minimum and maximum (dotted lines in our graphs),
- $F_{50 \%}$ is the median (solid lines in our graphs),
- $F_{25 \%}$ and $F_{75 \%}$ are the first and third quartile (dashed lines in our graphs).

This means that, for any fixed $N, 50 \%$ of the curves F_{r} are such that $F_{25 \%}(N) \leq F_{r}(N) \leq F_{75 \%}(N)$.

2 Results

Figure 1: $K=15$ microfacets within the pixel footprint.

Figure 2: $K=148$ microfacets within the pixel footprint.

Figure 3: $K=2,379$ microfacets within the pixel footprint.

Figure 4: $K=41,624$ microfacets within the pixel footprint

Figure 5: $K=166,496$ microfacets within the pixel footprint. Here, the glittering NDF has converged and is a Gaussian. The last level of detail is reached, and there are no more glints. In both cases, the sampled PDF is the same, and this PDF has a shape very close to the BSDF.

