Importance Sampling of Glittering BSDFs based on Finite Mixture Distributions (Supplemental Material 1/2) Convergence Comparisons

X. Chermain¹, B. Sauvage¹, J.-M. Dischler¹, C. Dachsbacher² ¹Université de Strasbourg, CNRS, ICube UMR 7357, France ²Institute for Visualization and Data Analysis, Karlsruhe Institute of Technology, Germany

1 Protocol

1.1 Convergence test

We investigate the convergence of the importance sampling procedure and use a Monte Carlo (MC) estimator with importance sampling to solve the equation

$$\int_{\Omega} f(\omega_o, \omega_i) |\omega_i \cdot \omega_g| \mathrm{d}\omega_i, \tag{1}$$

which corresponds to a white environment, i.e., $L(\omega_i) = 1$, as in the white furnace test. The exact value of this integral is the average value of the shadowing term G_1 ($0 \le G_1 \le 1$).

1.2 Raw data

We realise many estimations of Equation 1, i.e. many realisations r of the MC estimator. We collect each estimation as the number of samples N increases. Our raw data is thus a set of curves

$$F_r(N;\theta_o,\alpha,K) = \frac{1}{N} \sum_{j=1}^N \frac{f(\omega_o,\omega_{i_j})|\omega_{i_j}\cdot\omega_g|}{\text{PDF}(\omega_{i_j})},\tag{2}$$

where

- N is the number of samples,
- r is the index of a realisation, i.e. one estimation / one random seed,
- θ_o is the incidence angle corresponding to ω_o ,
- K is the number of microfacets in the footprint,
- $\text{PDF}(\omega_i)$ is the distribution used for sampling the incident direction ω_i . In the graphs below, green curves are obtained by sampling the multi-lobe component of the BSDF (our method), while red curves are obtained by sampling the mono-lobe approximation of the BSDF (previous method), namely the limit of $f(\omega_o, \omega_i)$ as $K \to \infty$.

1.3 Parameters

- $1 \le r \le 1,000$ realisations.
- $1 \le N \le 10,000$ samples.
- $\theta_o \in \{0 \ , \ 1. \ , \ 1.5\}$
- $\alpha \in \{0.1, 0.25, 0.6\}$
- $K \in \{15, 148, 2, 379, 41, 624, 166, 496\}$

1.4 Pointwise boxplot

Each graph plots the estimator against N, for a fixed set of parameters θ_o, α, K . We use semi-log graphs because of the wide range for N. Plotting F_r for all realisations r would be illegible. Aiming at a statistically more representative plot, we use pointwise boxplots, i.e., we draw curves corresponding to pointwise quartiles:

- $F_{0\%}$ and $F_{100\%}$ are the minimum and maximum (dotted lines in our graphs),
- $F_{50\%}$ is the median (solid lines in our graphs),
- $F_{25\%}$ and $F_{75\%}$ are the first and third quartile (dashed lines in our graphs).

This means that, for any fixed N, 50% of the curves F_r are such that $F_{25\%}(N) \leq F_r(N) \leq F_{75\%}(N)$.

2 Results

Figure 1: K = 15 microfacets within the pixel footprint.

Figure 2: K = 148 microfacets within the pixel footprint.

Figure 3: K = 2,379 microfacets within the pixel footprint.

Figure 4: K = 41,624 microfacets within the pixel footprint

Figure 5: K = 166,496 microfacets within the pixel footprint. Here, the glittering NDF has converged and is a Gaussian. The last level of detail is reached, and there are no more glints. In both cases, the sampled PDF is the same, and this PDF has a shape very close to the BSDF.