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Fig. 1. An arctic landscape with a normal mapped surface. (a) Rendering using the glinty BRDF of Chermain
et al. [2020], which is prone to geometric glint aliasing. Our geometric glint anti-aliasing (GGAA) method is
shown in (b) without normal map filtering and in (c) with normal map filtering. (d) Reference using 1,024
samples per pixel. Difference maps with false colors highlight pixel-wise errors on the glinty part.

Real-time geometric specular anti-aliasing is required when using a low number of pixel samples and high-
frequency specular lobes. Several methods have been proposed for mono-lobe bidirectional reflection distri-
bution functions (BRDFs), but none for multi-lobe BRDFs, e.g., a glinty BRDF. We present the first method
for real-time geometric glint anti-aliasing (GGAA). It eliminates most of the inconsistent appearing and
disappearing of glints on surfaces with significant curvatures during animations. The technique uses the glinty
BRDF of Chermain et al. [2020] and leverages hardware GPU-filtering of textures to filter slope distributions
on the fly. We also improve this glinty BRDF by adding a correlation factor of slope. This BRDF parameter
allows convergence to normal distribution functions that are not aligned on the surface’s axes. Above all, this
parameter makes glint rendering compatible with normal map filtering using LEAN mapping. Using GGAA
increases the rendering time from 0.6 % to 4.2 % and it requires 1/3 more memory due to MIP mapping of
tabulated slope distributions. The results are compared with references using a thousand samples per pixel.
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1 INTRODUCTION
Reflectance modeling, anti-aliasing, and normal mapping are essential rendering techniques in
computer graphics. Reflectance modeling allows the simulation of light scattering on the 3D scene’s
objects’ surfaces and permits representing materials compactly. Normal maps add details to surfaces,
thus making visual appearance more complex and realistic at little cost. Anti-aliasing is crucial
in rendering in different areas: albedo or normal map anti-aliasing, known as texture filtering,
removes moiré patterns and “salt and pepper” artifacts. Geometric anti-aliasing allows smooth
edges at object borders and geometric specular anti-aliasing removes jarring visual shimmering
on high curvature regions due to bright highlights at the sub-pixel level. In this paper, we focus
on reflectance modeling of sparkling surfaces combined with normal map filtering and geometric
specular anti-aliasing.

Sparkling materials are very common in our environment: sand, snow, ice, ocean, glittery materi-
als, etc., but they are challenging to render because their reflectance distributions contain high fre-
quencies and have hundreds of sharp lobes. Methods exist to render these kinds of materials [Jakob
et al. 2014; Yan et al. 2016], and some of them provide means to do so in real-time [Chermain et al.
2020; Zirr and Kaplanyan 2016]. Although these methods handle high-frequency lobes (glints), some
of these lobes are missed when the surface is strongly curved (especially normal mapped surfaces)
and when the number of pixel samples is low. We call this phenomenon geometric glint aliasing
(Figure 5a). During animations, this geometric glint aliasing produces disturbing and non-realistic
specular temporal incoherence between frames. Although geometric specular anti-aliasing methods
exist for rough surfaces modeled using a single specular lobe [Kaplanyan et al. 2016; Tokuyoshi
and Kaplanyan 2019], to the best of our knowledge, no such method exists for glinty surfaces. We
close this gap and propose a method targeting real-time geometric glint anti-aliasing (GGAA).
Since geometric glint aliasing primarily occurs when using normal maps, we also present a method
to make glints rendering compatible with efficient normal map filtering using Linear Efficient
Anti-aliased Normal (LEAN) mapping [Olano and Baker 2010].

Geometric specular anti-aliasing is generally achieved by convolving the slope distribution
function (SDF) of the microfacet BRDF with a normalized kernel, i.e., by filtering the SDF. If the SDF
is tabulated, anti-aliasing using efficient texture filtering based on a MIP pyramid can be used. We
propose to apply this principle to the glinty BRDF of Chermain et al. [2020], which uses 1D tabulated
SDFs (stored in textures). In a second step, we improve this BRDF by adding a new parameter: a slope
correlation coefficient. In the former method, only the slope standard deviation in 𝑥 and𝑦 directions
can be controlled by linearly transforming a target SDF. Our new linear transformation allows
a user to edit the slope correlation coefficient. This is of core importance, as it makes this BRDF
compatible with normal map filtering. Compared to the original model, the memory footprint of our
GGAA glinty BRDF increases by one third due to storing MIP maps for filtering the tabulated SDFs
efficiently (which amounts to 512 KiB total in our implementation). The rendering performance
remains almost unchanged (between 0.6 % to 4.2 % of rendering time overhead) because texture
filtering on the GPU is extremely optimized. The integration of the correlation coefficient does not
impact performance either. Lastly, GGAA preserves the normalization of the distributions and so
the BRDF is still energy preserving.
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To summarize, our contributions are as follows:

• We propose a real-time geometric glint anti-aliasing (GGAA) method (Section 4.2).
• We introduce a slope correlation factor to the BRDF of Chermain et al. [2020] (Section 5.2).
• We combine real-time glint rendering and normal map filtering.

2 RELATEDWORK
We are not aware of any previous work that explicitly addresses real-time geometric glint anti-
aliasing (GGAA). To this end, we review and discuss specular anti-aliasing, glint rendering, and
normal map filtering (with a focus on real-time methods), which are related to our work.

2.1 Geometric Specular Anti-aliasing
The article of Amanatides [1992] introduces the core concept to address geometric specular aliasing
and proposes to clamp the Phong-BRDF exponent to avoid it. Hill and Baker [2012] and later
Vlachos [2015] use built-in GPU-functions, e.g., dFdx and dFdy in OpenGL, to compute differences
between the half vector of two adjacent pixels. These values are used to clamp the roughness of the
material. Kaplanyan et al. [2016] project the pixel footprints into the slope domain and use them to
filter the SDFs of microfacet BRDFs. Tokuyoshi and Kaplanyan [2019] reduce the estimation error
by evaluating the derivatives in the projected half vector space instead of slope space.

In this paper, we draw from these works and use the geometric specular anti-aliasing method of
Kaplanyan et al. [2016]. We convolve the glinty SDF of Chermain et al. [2020] with a slope kernel.
We also estimate the derivatives in the projected half vector space [Tokuyoshi and Kaplanyan 2019].

2.2 Glint Rendering
Normal maps can be used to represent the microgeometry of glittery surfaces [Loubet et al. 2020;
Yan et al. 2014, 2016], but this implies high memory cost because a specific data structure for
acceleration must be built from the normal map. Some works use procedural normal distribution
functions (NDFs) [Atanasov and Koylazov 2016; Jakob et al. 2014; Wang et al. 2018] to reduce
memory footprints and rendering time. Still, these techniques are not efficient enough to be used
in real-time.

The procedural BRDF of Zirr and Kaplanyan [2016] is the first real-time BRDF producing glints
controlled by a microfacet density parameter. This BRDF model is not physically based, but it is the
fastest to evaluate and does not require memory. Chermain et al. [2020] propose a physically based
procedural BRDF, which converges to the BRDF of Cook and Torrance [1982] as microfacet density
increases to infinity. They use a dictionary of 1D distributions whose memory footprint is less than
one MiB. Wang et al. [2020] use a stochastic three-scale BRDF, which can handle environment
maps, contrary to other real-time methods; however, at the expense of more than 256 MiB of
pre-computed data.

When the surface is relatively flat, these three methods [Chermain et al. 2020; Wang et al. 2020;
Zirr and Kaplanyan 2016] do not produce glint aliasing because the NDF depends on the pixel
footprint, i.e., spatial filtering is performed.When the surface is curved, the observation and incident
directions vary significantly over the pixel footprint and then these methods are prone to geometric
glint aliasing as they all use high-frequency NDFs.
Geometric specular anti-aliasing can be used to account for the curvature by convolving the

NDF with a low-pass filter. Zirr and Kaplanyan [2016] and Wang et al. [2020] compute their NDFs
by counting the number of flakes in a pixel’s footprint. Consequently, convolving their NDFs is not
trivial and would require the filtering of the counting process. The NDF of Chermain et al. [2020]
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is a mixture of 1D SDFs stored in 1D textures. In this paper, we propose to perform the convolution
by filtering these 1D textures.

2.3 Normal Map Filtering
Normal map anti-aliasing by considering a given underlying BRDF is a longstanding problem in
rendering. It was first addressed by Fournier [1992], who applied multiple Phong lobes to fit a base
normal distribution, and, a bit later, by Becker and Max [1993], who provided smooth transitions
between three different rendering techniques. Toksvig [2005] proposes an implementation that
substitutes the power function with a two-dimensional texture look-up. Han et al. [2007] introduce
a representation based on spherical harmonics for low frequency reflectance and von Mises-Fisher
distributions for high-frequency reflectance, thus allowing more accurate filtering in frequency
domain. A much faster, simpler, and linear method for real-time filtering of specular highlights on
normal mapped surfaces is LEAN mapping [Olano and Baker 2010]. It uses a representation based
on the first and second moments of a Gaussian normal distribution, expressed in the tangent space
of the textured surface. LEADR mapping [Dupuy et al. 2013] improves this model by more accurate
masking-shadowing terms and projection weights.
In this paper, we use LEAN mapping to extract the roughness and the correlation factor of the

normal distribution induced by the normal map.We then use these statistics in our improved version
of the glinty BRDF of Chermain et al. [2020]. Unfortunately, LEADR mapping is not compatible
because only the V-cavity masking can be used with this BRDF, and, to the best of our knowledge,
there is no V-cavity masking function for non centered distributions.

3 REAL-TIME GLINT RENDERING
In this section, we briefly recapitulate the real-time glinty BRDF of Chermain et al. [2020].

Microfacet BRDF. Almost all glint reflection models are based on a microfacet BRDF [Heitz 2014],
which assumes that the microsurface is composed of numerous tiny mirrors (microfacets). The
orientation of the microfacets follows a normal distribution function (NDF) and is denoted as
𝐷 (𝜔𝑚), which is the distribution of micronormals 𝜔𝑚 = (𝑥𝑚, 𝑦𝑚, 𝑧𝑚)𝑇 at a surface position.

The microfacet BRDF 𝑓 is based on the NDF and defined as

𝑓 (𝜔𝑜 , 𝜔𝑖 ) =
𝐹 (𝜔𝑜 , 𝜔ℎ)𝐺2 (𝜔𝑜 , 𝜔𝑖 , 𝜔ℎ)𝐷 (𝜔ℎ)

4(𝜔𝑜 · 𝜔𝑔) (𝜔𝑖 · 𝜔𝑔)
, (1)

where 𝐹 is the Fresnel term and𝐺2 is the masking-shadowing function. The normalized directions
𝜔𝑖 and 𝜔𝑜 are the incident direction and the outgoing (observation) direction, respectively. Finally,
the geometric normal is 𝜔𝑔, and the half vector 𝜔ℎ = (𝑥ℎ, 𝑦ℎ, 𝑧ℎ)𝑇 is computed as 𝜔ℎ = (𝜔𝑜 +
𝜔𝑖 )/| |𝜔𝑜 + 𝜔𝑖 | |.

Most NDFs are derived from a slope distribution function (SDF) defined as

𝑃22 (𝑚̃) = 𝐷 (𝜔𝑚) (𝜔𝑚 · 𝜔𝑔)4, (2)

where 𝑚̃ = (−𝑥𝑚/𝑧𝑚,−𝑦𝑚/𝑧𝑚)𝑇 is the microslope according to the micronormal 𝜔𝑚 . Analytical
SDFs with mono-lobe shapes (Figure 2, left), like Beckmann [Beckmann and Spizzichino 1963] or
GGX [Walter et al. 2007] distributions, are commonly used in computer graphics.

Glinty SDF. Glints are produced by sharp specular highlights that introduce high frequencies
in the SDF (Figure 2, right). Chermain et al. [2020] define a procedural physically based SDF 𝑃22glint
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Fig. 2. Left: mono-lobe SDF used for smooth surfaces. Right: multi-lobe SDF used for glinty surfaces.

with sharp lobes targeted for real-time rendering as

𝑃22glint (𝑚̃,P) =
⌊𝑙P ⌋+1∑
𝑙= ⌊𝑙P ⌋

𝑤 (𝑙)
∑
𝑠0∈P

𝑊P (𝑙, 𝑠0)𝑃22𝑀 (𝑚̃, 𝑙, 𝑠0). (3)

It is a patch-SDF, i.e., it is defined for any patch P, which is actually the pixel footprint. It is based
on a virtual MIP hierarchy with levels of detail 𝑙 (LOD), and spatial 2D cells 𝑠0. The outer sum in
Equation 3 interpolates between two consecutive LODs, where 𝑙P is the continuous LOD associated
with P, and𝑤 (𝑙) are linear weights. The inner sum approximates an integration over P by a sum
over the cells 𝑠0 ∈ P, weighted by𝑊P (𝑙, 𝑠0) so that

∑
𝑠0∈P𝑊P (𝑠0, 𝑙) = 1.

The patch-SDF of Equation 3 is a mixture of linearly transformed SDFs 𝑃22
𝑀
(𝑚̃, 𝑙, 𝑠0) defined for a

microslope 𝑚̃, a LOD 𝑙 and a cell 𝑠0. A 2D linear transformation represented by a 2 × 2 matrix𝑀
is applied on an original SDF 𝑃22𝑜 in order to remove glint alignment (rotation) and to control the
roughness of the material (scaling):

𝑃22𝑀 (𝑚̃, 𝑙, 𝑠0) =
1

det(𝑀) 𝑃
22
𝑜 (𝑀−1𝑚̃, 𝑙, 𝑠0). (4)

In other words, the distribution 𝑃22
𝑀

is computed from 𝑃22𝑜 by recovering the original slope:

𝑚̃𝑜 = (𝑥𝑚̃𝑜
, 𝑦𝑚̃𝑜

)𝑇 = 𝑀−1𝑚̃. (5)

Procedural generation. The technique of Chermain et al. [2020] is “procedural” as the distributions
in Equations 3 and 4 are computed on-the-fly, when the pixel footprint P is known. This is achieved
by defining the original SDF 𝑃22𝑜 as the product of two 1D marginal distributions:

𝑃22𝑜 (𝑚̃𝑜 , 𝑙, 𝑠0) = 𝑃2−𝑜 (𝑥𝑚̃𝑜
, 𝑙, 𝑠0)𝑃−2𝑜 (𝑦𝑚̃𝑜

, 𝑙, 𝑠0). (6)

Themarginal distributions 𝑃2−𝑜 and 𝑃−2𝑜 are randomly picked in a pre-computed dictionary composed
of 𝑁 multi-scale 1D distributions 𝑃𝑜 (see Figure 3). The highest LOD of all distributions 𝑃𝑜 is the
marginal distribution of a Beckmann SDF, with isotropic roughness 𝜎𝑜 . To enforce spatial coherence
when evaluating Equation 6, the pseudo-random generator uses the cell position 𝑠0 as a seed.

4 REAL-TIME GEOMETRIC GLINT ANTI-ALIASING
When a surface is flat, a glinty BRDF does not produce glint aliasing because the SDF is obtained
from filtering using the footprint P. In contrast, on curved surfaces geometric glint aliasing occurs
in form of missing glints (see Figures 1b, 8 and 9). The assumption that the observation and incident
directions vary only slightly over P does not hold any more on curved geometry. This causes quick
variations for the half slopes ℎ̃, as shown in Figures 4a and 4b. The half slope varies strongly across
the footprint P and causes large half slope derivatives, which would require the integration of the
BRDF over a solid angle. Integration in the half slope domain is simpler, as demonstrated by recent
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𝑥𝑚̃𝑜
or 𝑦𝑚̃𝑜

LO
D
𝑙

0 0 0

0 𝑖 𝑁 − 1. . . . . .𝑃𝑜

𝜎𝑜 𝜎𝑜 𝜎𝑜

Fig. 3. Pre-computed dictionary of 1D multi-scale distributions 𝑃𝑜 [Chermain et al. 2020]. They serve as
marginal distributions for 𝑃22𝑜 . As the LOD grows, they converge towards a Gaussian distribution with the
same standard deviation 𝜎𝑜 .

geometric specular anti-aliasing methods (Section 4.1). We leverage this technique to improve the
BRDF of Chermain et al. [2020] (Section 4.2).

4.1 Geometric Specular Anti-aliasing
In order to efficiently pixel filter the microfacet BRDF (Equation 1), Kaplanyan et al. [2016] assume
that all terms of the BRDF are constant over the pixel footprint P, except for the SDF (the main
source of high frequency). Then, instead of integrating over P (Figure 4a), they change the inte-
gration domain to the microslope domain (Figure 4c), assuming that the half slope ℎ̃ = (𝑥

ℎ̃
, 𝑦
ℎ̃
)𝑇 =

(−𝑥ℎ/𝑧ℎ,−𝑦ℎ/𝑧ℎ) varies linearly with the surface position (first-order Taylor approximation). The
result is a filtered SDF

𝑃22 (𝑚̃) = 𝐾 ∗ 𝑃22 (𝑚̃) (7)

which can be interpreted as a convolution of the SDF with a normalized kernel𝐾 (Figure 4c). Similar
to Equation 2, the filtered SDF is used to define the filtered NDF

𝐷 (𝜔𝑚) =
𝑃22 (𝑚̃)

(𝜔𝑚 · 𝜔𝑔)4
. (8)

This last term is used in the microfacet model (Equation 1). Estimating Equation 7 is done by
computing the half slope kernel 𝐾 associated with the pixel footprint P.

Computing the Half Slope Kernel. The kernel 𝐾 is either a box, a parallelogram or a Gaussian,
depending on the expression of 𝑃22. For example, if the SDF is a Gaussian, choosing 𝐾 also as a
Gaussian leads to a closed form for 𝑃22. The extent of the kernel 𝐾 depends on the Jacobian dℎ̃

d𝑝

of the half slope ℎ̃ with respect to the pixel coordinate 𝑝 . On GPUs, an approximation Δℎ̃
Δ𝑝 can be

computed by using finite differences of ℎ̃ between two adjacent pixels (Figure 4c).
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ℎ̃1

ℎ̃2

ℎ̃3

ℎ̃3 ℎ̃2 ℎ̃1

𝑚̃

𝑃22

(a) The specular lobe is missed

P2

(b) Half slopes

(c) Slopes filtering

𝐾

0.5Δℎ̃
Δ𝑝

specular lobe

P1

P3

Fig. 4. Geometric specular anti-aliasing: with one sample per pixel, the specular lobe can be missed, because
the surface has a high curvature. (a) A curved surface is seen through three pixels 𝑝1, 𝑝2 and 𝑝3. (b) The
curvature produces quick variations of the half-slopes (from ℎ̃1 to ℎ̃2 and to ℎ̃3). (c) The highlight is missed
when sampling at ℎ̃1, ℎ̃2, and ℎ̃3. Geometric specular anti-aliasing performs a convolution with a kernel 𝐾 ,
whose width is efficiently computed on GPU using finite differences Δℎ̃/Δ𝑝 .

4.2 Geometric Glint Anti-aliasing
As a glinty SDF 𝑃22glint is high frequency, some of its lobes can easily be missed during rendering
(Figure 5a). We now derive our real-time glint anti-aliasing model. To do so, we filter the procedural
patch-SDF 𝑃22glint with a kernel 𝐾 (Figure 5b).

Similar to Equation 7, the filtered procedural patch-SDF is

𝑃22glint (𝑚̃,P) =
[
𝐾 (·) ∗ 𝑃22glint (·,P)

]
(𝑚̃). (9)

By expanding 𝑃22glint using Equation 3, and by inverting sums and convolutions, we obtain

𝑃22glint (𝑚̃,P) =
⌊𝑙P ⌋+1∑
𝑙= ⌊𝑙P ⌋

𝑤 (𝑙)
∑
𝑠0∈P

𝑊P (𝑙, 𝑠0)𝑃22𝑀 (𝑚̃, 𝑙, 𝑠0), (10)

where

𝑃22
𝑀
(𝑚̃, 𝑙, 𝑠0) =

[
𝐾 (·) ∗ 𝑃22𝑀 (·, 𝑙, 𝑠0)

]
(𝑚̃). (11)

To compute 𝑃22
𝑀

efficiently, the filtering must be performed in the original slope space, i.e., the
domain of the dictionary (Figure 3). Similar to Equation 4 we have

𝐾 (𝑚̃) = 1
det(𝑀)𝐾𝑜 (𝑚̃𝑜 ). (12)
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Fig. 5. Geometric glint anti-aliasing is similar to geometric specular anti-aliasing (Figure 4) but the SDF
exhibits several sharp lobes. (a) Glints can be missed because the surface has a high curvature. (b) Geometric
glint aliasing is removed by convolving the SDF 𝑃22glint with a kernel 𝐾 (low-pass filter).

𝑥𝑚̃𝑜

𝑦𝑚̃𝑜

𝑃22𝑜

𝐾𝑜

𝑥𝑚̃𝑜

𝑦𝑚̃𝑜

𝑃22𝑜

≈

𝑃2−𝑜

𝑃
−2 𝑜

𝐾
𝑜
,𝑦

𝐾𝑜,𝑥
𝑀−1

𝑥𝑚̃

𝑦𝑚̃

𝑥𝑚̃𝑜

𝑦𝑚̃𝑜

𝑃22
𝑀

𝐾

𝑦𝑚̃ 𝑥𝑚̃

(a) (b) (c)

Fig. 6. Approximation of the filtered 𝑃22
𝑀

by a separable convolution in the original half slope space. (a to
b)𝑀−1 transforms both the distribution 𝑃22

𝑀
(to 𝑃22𝑜 ) and the kernel 𝐾 (to 𝐾𝑜 ). (b to c) 𝐾𝑜 is approximated by

a conservative separable form 𝐾𝑜,𝑥 (𝑥𝑚̃𝑜
)𝐾𝑜,𝑦 (𝑦𝑚̃𝑜

).

By a change of variables (Equation 5) in the convolution (Equation 11), and by using Equations 4
and 12, we obtain

𝑃22
𝑀
(𝑚̃, 𝑙, 𝑠0) =

1
det(𝑀)

[
𝐾𝑜 (·) ∗ 𝑃22𝑜 (·, 𝑙, 𝑠0)

]
(𝑀−1𝑚̃). (13)

This is illustrated in Figure 6a and 6b. If the kernel 𝐾𝑜 is a Dirac distribution, then Equation 13
becomes Equation 4 as expected.
Ultimately, the objective is to separate the convolution in order to independently filter each

marginal distribution (Equation 6); recall that 𝑃2−𝑜 and 𝑃−2𝑜 are stored in 1D textures. To this end,
we approximate the original kernel 𝐾𝑜 by a conservative separable form (Figure 6c)

𝐾𝑜 (𝑚̃𝑜 ) ≈ 𝐾𝑜,𝑥 (𝑥𝑚̃𝑜
)𝐾𝑜,𝑦 (𝑦𝑚̃𝑜

). (14)
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As a result, Equation 13 is approximated

𝑃22
𝑀
(𝑚̃, 𝑙, 𝑠0) ≈

1
det(𝑀)

[
𝐾𝑜,𝑥 (·) ∗ 𝑃2−𝑜 (·, 𝑙, 𝑠0)

]
(𝑥𝑚̃𝑜

)[
𝐾𝑜,𝑦 (·) ∗ 𝑃−2𝑜 (·, 𝑙, 𝑠0)

]
(𝑦𝑚̃𝑜

). (15)

Since the marginal distributions 𝑃𝑜 are normalized, the filtered distribution 𝑃22
𝑀

is normalized and
the BRDF is energy preserving if the kernels are normalized.

In summary, we have to implement Equations 15 in order to benefit from GGAA. In Section 6.1
we explain how to implement this Equation, using efficient GPU texture filtering.

5 NORMAL MAP FILTERING
Compared to Figure 1d, the renderings in Figures 1a and 1b are missing many highlights in the
distance. This is due to a naive smoothing of the normal map. The problem has been solved by
LEAN mapping [Olano and Baker 2010], which is based on the assumption that both the normal
map and the microsurface have Gaussian distributions. Since the distribution 𝑃22𝑜 converges to a
Beckmann (Gaussian) SDF in the distance (larger 𝑙 in Figure 3), glints can be combined with LEAN
mapping (Figure 1c). We first briefly recapitulate LEAN mapping and then propose a non-axis
aligned anisotropic extension of Chermain et al. [2020] that makes this combination possible.

5.1 LEAN mapping
LEAN mapping efficiently filters normal maps by approximating not only the first, but also the
second moments of normal map distributions within a footprint P. Given a Beckmann microfacet
distribution representing the material, and a slope map 𝑛̃ = (𝑥𝑛̃, 𝑦𝑛̃), a closed form of the patch-SDF
is derived as an anisotropic Gaussian distribution with covariance matrix

Σ =

[
𝜎2𝑥 𝜌𝜎𝑥𝜎𝑦

𝜌𝜎𝑥𝜎𝑦 𝜎2𝑦

]
. (16)

All parameters (mean, variances 𝜎𝑥 and 𝜎𝑦 , and correlation factor 𝜌) can be efficiently computed
from precomputed MIP maps of 𝑥𝑛̃ , 𝑦𝑛̃ , 𝑥2𝑛̃ , 𝑦

2
𝑛̃
, and 𝑥𝑛̃𝑦𝑛̃ .

The glinty BRDF of Chermain et al. [2020] allows the control of 𝜎𝑥 and 𝜎𝑦 , but there is no
correlation factor 𝜌 . However, as shown in Figure 7, controlling 𝜌 is mandatory for normal map
filtering, because it takes the covariance into account. This enables the representation of anisotropic
lobes with arbitrary orientation, which appear when normal maps have anisotropic features
(Figure 7). In the next section we show how to add a slope correlation factor 𝜌 to the former
method.

5.2 Slope Correlation Factor
In order to combine glints and LEAN mapping, we need to control the covariance matrix of 𝑃22

𝑀

(and hence of 𝑃22glint) such that it converges towards Σ (Equation 16) when the LOD 𝑙 increases.
To achieve that, we use the matrix𝑀 which controls the variance of the SDF at the highest LOD
(Equation 4 and Figure 3).

The original distribution 𝑃22𝑜 tends to an isotropic Gaussian with covariance matrix

Σ𝑜 =

[
𝜎2𝑜 0
0 𝜎2𝑜

]
(17)

where 𝜎𝑜 is the roughness of the dictionary (Figure 3). In the former method [Chermain et al. 2020],
the transformation𝑀 allows 𝑃22

𝑀
to converge to axis aligned anisotropic Gaussian distribution, that

is where the slope correlation factor always equals to zero (𝜌 = 0).
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LEAN with 𝜌
RMSE: 4.764 %

ReferenceNo LEAN
RMSE: 8.009 %

0.5

0

D
ifference

LEAN, 𝜌 = 0
RMSE: 10.378 %

Normals

Fig. 7. LEAN mapping is combined with a glinty BRDF. Accounting for the slope correlation factor 𝜌 is
necessary to faithfully filter anisotropic normal maps.

To overcome this limitation, we introduce a control of the correlation factor through the new
following transformation

𝑀 =
1
𝜎𝑜

[
𝜎𝑥

√
1 − 𝜌2 𝜌𝜎𝑥
0 𝜎𝑦

]
. (18)

By this, the covariance 𝑀Σ𝑜𝑀
𝑇 of 𝑃22

𝑀
approaches Σ (Equation 16) as the LOD increases. There

exists an infinity of appropriate matrices𝑀 , however, this particular one has a simple closed form
which is a major advantage in the context of real-time rendering. Since𝑀 was already present in
the model, the improvement comes almost for free.
Combining glints and LEAN mapping boils down to precomputing the MIP maps of 𝑥𝑛̃ , 𝑦𝑛̃ , 𝑥2𝑛̃ ,

𝑦2
𝑛̃
and 𝑥𝑛̃𝑦𝑛̃ , and then in real-time
• compute 𝜎𝑥 and 𝜎𝑦 , and 𝜌 as in Olano and Baker [2010],
• compute M using Equation 18,
• use 𝑀 into Equation 4 (without glint anti-aliasing) or into Equation 15 (with glint anti-
aliasing).

6 IMPLEMENTATION AND RESULTS
We implemented our GGAAmethod and the additional correlation factor using the publicly available
OpenGL code of Chermain et al. [2020]. Both contributions are independent and can be implemented
separately. The C++ and GLSL code is available in the supplemental material. Our implementation
uses forward rendering. Note that in all our renderings, we apply the star-shaped bloom post-effect
of Zirr and Kaplanyan [2016] and a tonemap operator to better visualize the high dynamic range of
the glints. Note that image-based lighting is not supported by the glinty BRDF: consequently, in all
our results, glints are a result of point or directional lighting while the environment map is used for
the diffuse and smooth specular components. When computing difference maps (in the figures) and
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errors (RMSE) we only account for the specular component of the image coming from the glinty
BRDF. Our result use only one sample per pixel. The reference renderings use 1,024 samples per
pixel.

6.1 Implementing GGAA

The procedural filtered patch glinty SDF 𝑃22glint is a mixture of filtered linearly transformed SDFs

𝑃22
𝑀

(Equations 10 and 15). To efficiently approximate the two convolutions involved, we use the
OpenGL function textureGrad as

𝑃22
𝑀
(ℎ̃, 𝑙, 𝑠0) ≈

1
det(𝑀)

textureGrad

(
𝑃2−𝑜 (𝑙, 𝑠0), 𝑥ℎ̃𝑜 , 𝑠𝐾

d𝑥
ℎ̃𝑜

d𝑥
, 𝑠𝐾

d𝑥
ℎ̃𝑜

d𝑦

)
textureGrad

(
𝑃−2𝑜 (𝑙, 𝑠0), 𝑦ℎ̃𝑜 , 𝑠𝐾

d𝑦
ℎ̃𝑜

d𝑥
, 𝑠𝐾

d𝑦
ℎ̃𝑜

d𝑦

)
, (19)

where the derivatives are approximated using the OpenGL functions dFdx and dFdy. We experi-
mented two variants, namely

dℎ̃𝑜
d𝑥

≈ 𝑀−1dFdx(ℎ̃) and
dℎ̃𝑜
d𝑦

≈ 𝑀−1dFdy(ℎ̃), (20)

as in [Kaplanyan et al. 2016]), and

dℎ̃𝑜
d𝑥

≈ 𝑀−1dFdx(ℎ⊥) and
dℎ̃𝑜
d𝑦

≈ 𝑀−1dFdy(ℎ⊥), (21)

as in [Tokuyoshi and Kaplanyan 2019]. The second variant, which is our default formula, uses the
projected half vector ℎ⊥ = (𝑥ℎ, 𝑦ℎ)𝑇 to reduce the kernel estimation error at grazing angles, as
demonstrated by Tokuyoshi and Kaplanyan [2019].
We decided not to use the derivative functions dFdx and dFdy directly on ℎ̃𝑜 , because it would

imply one evaluation per cell 𝑠0 in Equation 10 due to 𝑀 which contains a random rotation
depending on 𝑠0 [Chermain et al. 2020]. Instead, Equations 20 and 21 evaluate derivative functions
dFdx and dFdy only once per pixel, i.e., once per patch P.

The scaling factor 𝑠𝐾 in Equation 19 is set to a default value of 0.5 in order to avoid overlapping
filter region between adjacent pixels (Figure 4 and 5). See Section 6.2 for a detailed discussion of
this parameter.

To summarize, implementing GGAA boils down to computing the derivative (Equation 20 or 21),
and then replacing the textureLod-functions in the former method by the textureGrad-functions
in Equation 19. For each LOD of each tabulated distribution 𝑃𝑜 in the dictionary (Figure 3), a MIP
map is generated before the rendering. If the distributions are stored in a 1D array texture, using the
OpenGL function glGenerateMipmap is sufficient. Consequently, the memory footprint increases
by one third (from 384 KiB to 512 KiB in our implementation). Lastly, mirrored texture repetition
must be activated (see supplemental document for more details).

6.2 GGAA Results
Geometric glint anti-aliasing is applicable to geometry without and with normal maps. In the first
case, when the surface has high curvature, our glint anti-aliasing method yields renderings closer
to the reference than the method without anti-aliasing, as demonstrated in Figure 8. When using
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Without GGAA With GGAA Reference

RM
SE

=
4.
81
5
%

0.5

0

Difference

RM
SE

=
3.
66
1
%

Fig. 8. Geometric glint anti-aliasing on curved metallic tubes with sparkles. GGAA yields smaller differences
to the reference.

normal maps (without LEAN filtering), our anti-aliasing technique is also efficient, as demonstrated
in Figures 1b and 9. In this case, the half slope is computed in the shading frame defined by the
normal of the normal map, then the derivatives are computed (see Kaplanyan et al. [2016] for more
details). Above all, GGAA improves the glints coherence between frames (see supplemental video).
In Figure 9, we compare Equations 20 and 21: using finite differences of projected half vectors

yields lower errors than half slopes. We also compare different kernel size s by using 𝑠𝐾 = 0.5
(default value) and 𝑠𝐾 = 1. Small kernels (𝑠𝐾 = 0.5) yield results closer to the reference, but induce
more specular shimmering in the animated sequences (see supplemental video). Larger kernels
(𝑠𝐾 = 1) induce less specular shimmering, however, they lead to overfiltered specular highlights.

Performance. Performance has been measured on an NVIDIA GeForce 2080 RTX GPU with
1920 × 1080 resolution. The bloom post-effect, the tonemap operator, and LEAN filtering are
disabled. As shown in Table 1, the rendering time overhead varies from 0.6 % to 4.2 % in our tests. In
the method without GGAA, the MIP map for each distribution 𝑃𝑜 is not generated to avoid increased
memory traffic, the slopes derivatives are not computed and the call to the textureGrad-function is
replaced by a call to the textureLod-function. These differences are responsible of the performance
reduction.
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𝑠𝐾 = 0.5
RMSE: 7.425 %

Reference𝑠𝐾 = 0.5
RMSE: 7.527 %

Without GGAA
RMSE: 13.484 %

0.5

0

Difference

𝑠𝐾 = 1
RMSE: 7.794 %

𝑠𝐾 = 1
RMSE: 8.185 %

Δℎ̃/Δ𝑝 Δℎ⊥/Δ𝑝

Fig. 9. Sparkling lion head. Comparison between a tight kernel (𝑠𝐾 = 0.5), and a large and conservative kernel
(𝑠𝐾 = 1). RMSEs obtained with 𝑠𝐾 = 1 are higher than RMSEs obtained with 𝑠𝐾 = 0.5, but large kernels
produce less specular shimmering in animations. Differences to the reference are also more prominent with
half slopes derivatives Δℎ̃/Δ𝑝 . For all settings, results with geometric glint anti-aliasing yield lower RMSEs
and less specular shimmering.

Figure 1 Figure 8 Figure 9
459 k triangles 40 k triangles 262 k triangles

No GGAA 3.68 ms 1.36 ms 3.03 ms
GGAA 3.70 ms 1.42 ms 3.15 ms

Table 1. Rendering times in milliseconds per frame (ms). The GGAA overhead is 0.6 % to 4.2 %.

6.3 Slope Correlation Factor Results
The slope correlation factor 𝜌 introduced in Section 5.2 allows us to converge to non-axis aligned
Beckmann (Gaussian) distributions as the microfacet density increases, as shown in Figure 10. The
former method corresponds to the left column (𝜌 = 0).

The correctness of the matrix𝑀 in Equation 18 is tested in this Shadertoy https://www.shadertoy.
com/view/3ddfDf. It shows that the transformed isotropic distribution is equivalent to the non-axis
aligned Beckmann distribution [Heitz 2014].

6.4 LEAN mapping with Glint Results
In Figure 1c we show that normal map filtering using LEANmapping combined with glint rendering
better matches the reference. The major differences occur in the background, where normals are
averaged and the roughness of the surface increases. In Figure 7 a sparkle sphere with an anisotropic
normal map is shown with different settings for normal map filtering. The material has little
roughness and thus the surface looks smooth without normal map filtering. Using LEAN mapping
without the correlation factor 𝜌 leads to an incorrect lobe, whereas the rendering with full LEAN
mapping (with 𝜌) gives an appearance that matches the reference better. In Figure 1c and 7, our
GGAA method is activated in order to remove most of geometric glint aliasing. When zooming
in, sparkles can be seen individually (see the supplemental video). When zooming out, all the tiny
glinty lobes aggregate to form a relatively smooth anisotropic specular lobe, as shown in Figure 7.
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𝜌 = 0 𝜌 = 0.5 𝜌 = 0.99

Fig. 10. Controlling the slope correlation factor 𝜌 allows the lobe to be non-axis aligned. Top: glinty lobes
(microfacet density equals exp(15)). Bottom: the NDF has converged to a Beckmann distribution (microfacet
density equals exp(50))

7 DISCUSSION AND LIMITATIONS
Energy preservation. The model remains physically based with the geometric glint anti-aliasing

(Section 4), provided that the filtering kernels are normalized. Indeed, the marginal distributions
𝑃2−𝑜 and 𝑃−2𝑜 are normalized so the filtered distribution 𝑃22

𝑀
in Equation 15 is still normalized. Hence

𝑃22glint is also normalized (Equation 10). We noticed no energy creation in our experiments though
we have not experimentally proved it. We conjecture that textureGrad uses normalized discrete
kernels.

Normal map filtering. Our work does not benefit from LEADR mapping and its Smith masking
function for non-centered distribution because the BRDF of Chermain et al. [2020] only handles
the V-cavity masking function. To the best of our knowledge, there is no V-cavity function for
non-centered distributions. Finding it is an interesting future work that would benefit normal map
filtering combined with glint rendering.
Our normal map filtering method assumes that the glinty SDF and the distribution induced by

the normal map are both Gaussians. If these assumptions are not fulfilled, then the surface can look
too rough and/or too glinty.

Remaining Geometric Glint Aliasing. Our GGAA method does not remove glint aliasing entirely,
especially when combined with normal maps (see the supplemental video). Indeed, it inherits the
limitations of geometric specular anti-aliasing [Kaplanyan et al. 2016; Tokuyoshi and Kaplanyan
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2019]. Firstly, geometric aliasing is still there and can also cause specular shimmering. Secondly,
these methods and ours rely on several assumptions and approximations: first-order Taylor ap-
proximation of the half slopes, minor curvature variation in the local neighborhood of the surface,
and finite differences using GPU function. However, our GGAA technique visibly reduces flicker
aliasing without significantly impacting memory and performance.

8 CONCLUSION
We have proposed geometric glint anti-aliasing to remove a significant part of the disturbing
specular shimmering present during animations when using real-time glinty BRDFs and curved
surfaces (normal mapped or not). Our technique requires only one third additional memory while
having little impact on performance (the overhead varies from 0.6 % to 4.2 % in our tests). We have
also introduced a slope correlation factor to the glinty BRDF of Chermain et al. [2020] and combine
normal filtering with real-time glint rendering.
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