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Fig. 1. We develop an efficient algorithm that produces an orientable dense cyclic infill by aligning a field of periodic functions, contouring it to obtain

cycles, and connecting all cycles into one. We leverage this algorithm to print anisotropic appearances using fused filament fabrication. Left : the shape with
purple boundaries is infilled with a cycle. The cycle’s directions have four modes: parallel to the boundary (red area), orthogonal to the boundary (blue area),

smoothest lines (yellow area), and constrained lines (color gradient area). Our algorithm is very flexible, allowing directions to be constrained everywhere

(areas with a color gradient in the logo) or only within the vicinity of the boundary (blue, red, and yellow areas). Alignment with boundaries can also be

constrained, as in this example. The grey cycle is the output of our algorithm (curve interspace objective: 2.5 mm). Right : Printed cycle with interspace set to

0.4 mm. The trajectory’s directions determine the appearance, as extruded filaments exhibit anisotropic roughness.

We present a method to 3D print surfaces exhibiting a prescribed varying

field of anisotropic appearance using only standard fused filament fabrica-

tion printers. This enables the fabrication of patterns triggering reflections

similar to that of brushed metal with direct control over the directionality of

the reflections. Our key insight, on which we ground the method, is that the

direction of the deposition paths leads to a certain degree of surface rough-

ness, which yields a visual anisotropic appearance. Therefore, generating

dense cyclic infills aligned with a line field allows us to grade the anisotropic

appearance of the printed surface. To achieve this, we introduce a highly

parallelizable algorithm for optimizing oriented, cyclic paths. Our algorithm

outperforms existing approaches regarding efficiency, robustness, and result

quality. We demonstrate the effectiveness of our technique in conveying

an anisotropic appearance on several challenging test cases, ranging from

patterns to photographs reinterpreted as anisotropic appearances.
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1 INTRODUCTION

Anisotropic appearances such as brushed metal offer a unique cre-

ativemedium: as light reflects with a strong directional bias, patterns

shimmer and move with the viewer’s position, creating dynamic

and lively imagery. Making brushed metal patterns is challenging,

requiring mechanical abrasive tools to scratch surfaces and rare

skills and expertise [Stango 2002].

We propose a novel method to fabricate plates visually resem-

bling intricate brushed patterns on consumer-level 3D printers. We

build upon a remarkable Fused Filament Fabrication (FFF) property:

extruded plastic beads naturally exhibit a pronounced anisotropic

surface roughness. We study and measure this optical property

in Section 3. By orienting and aligning the deposition paths, we

produce surfaces with precisely controlled anisotropic reflectance

patterns according to user specifications.

Our patterns print as a single continuous extrusion path within a

surface, leading to a high-quality and efficient deposition without

transfer moves or interruptions of the deposition head. A continuous

deposition is crucial for material extrusion quality [Hergel et al.

2019] and printing time [Papacharalampopoulos et al. 2018].

We encode the visual anisotropy with input maps akin to textures

that define the orientation of the deposition paths. Such textures con-

trolling the direction of anisotropy are commonly used in graphics

software. We provide two complementary methods to define the in-

put textures. The user can 1) use an existing design tool to create tex-

tures representing an anisotropic surface (e.g., Adobe Substance or

Blender) and/or 2) request an anisotropy that is parallel/orthogonal

to a shape boundary. From these inputs, our optimizer generates

trajectories that precisely follow the requested anisotropy, are as
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Fig. 2. Our method allows designers to print anisotropic appearances (right

image) with an arbitrary direction of anisotropy (represented as an image

texture on the left). This type of texture is used in physically based renderers

to model complex anisotropic appearance (middle image obtained with the

Filament renderer [Google 2023]).

smooth as possible without constraints, and align with boundaries

everywhere specified.

The computer graphics community has a rich literature devoted

to the virtual design and rendering of complex anisotropic appear-

ances, such as brushed metals [Westin et al. 1992], and in recent

years has also developed studies revolving around additive manu-

facturing technologies. Our method tackles an interrelated problem:

decorating flat surfaces with an anisotropic appearance using af-

fordable and available FFF technologies (see Figure 2). By enabling

the fabrication of anisotropic appearances, we empower texture

artists with a method to materialize their virtual designs without

incorporating additional features into the 3D printer.

Contributions. Our main contribution is an efficient and robust

algorithm to compute a continuous deposition cycle that follows a

given line field or other alignment conditions and confer a tailored

anisotropic appearance to the result (Sections 4 and 5). The main

algorithmic ingredients are a series of highly parallelizable opti-

mizations that yield a cycle corresponding to the deposition path.

Compared to the state-of-the-art [Bedel et al. 2022], we achieve a

considerable speedup in execution time by up to three orders of

magnitude. Our approach also aligns better with the orientation

field: the number of turns is greatly reduced, improving the appear-

ance (Section 6). In order to experimentally support our method,

we empirically verify the correlation between the deposition path

direction, surface roughness, and anisotropic appearance (Section 3).

We provide an open-source implementation of our method, the g-

code file associated with each print, and the filament details at https:

//github.com/mfx-inria/anisotropic_appearance_fabrication.git.

2 RELATED WORK

This section reviews prior works on appearance fabrication and

dense infills with orientable trajectories since our method covers

these research topics.

2.1 Appearance fabrication

Surface geometry’s microscopic details give rise to the visual ap-

pearance of many materials. Since the micro-scale geometry of a

surface is usually highly complex, a statistical representation is more

suitable to model the appearance. Traditionally, this representation

has been the bidirectional scattering distribution function (BSDF),

which represents how a surface reflects light [Bartell et al. 1981].

𝜎𝑦/𝜎𝑥 = 1 𝜎𝑦/𝜎𝑥 = 2 𝜎𝑦/𝜎𝑥 = 4 𝜎𝑦/𝜎𝑥 = 8

Fig. 3. Rendering of four plastic spheres with different roughness ratios,

lighted by a point light at the camera position. The appearance is modeled

by a physically based BSDF parameterized by roughnesses 𝜎𝑥 and 𝜎𝑦

(microfacet BSDF with anisotropic Beckmann distribution [Heitz 2014]).

The highlight form depends on the anisotropy of the surface’s roughness.

In computer graphics, anisotropic appearances are commonly

modeled bymicrofacet BSDFs, which are simple and general-purpose

scattering models based on geometric optics [Ribardière et al. 2019].

In addition, microfacet BSDFs are an excellent fit for real materi-

als [Dong et al. 2016]. The surface’s microscopic normal distribution

mainly determines the shape of a microfacet BSDF. Simple analyti-

cal distributions parameterized by the surface roughness are usual.

This surface statistic is the standard deviation of the slopes [Smith

1967] and can be measured on existing surfaces. The roughness is

either equal (isotropic) or unequal (anisotropic) along the surface’s

tangent and bitangent directions [Heitz 2014]. This work focuses on

anisotropic surfaces (brushed metals or plastics) where the rough-

ness along the tangent direction is low, and the roughness along the

bitangent is high (or inversely). This kind of surface gives elongated

specular highlights, while materials with isotropic roughness give

round highlights (see Figure 3).

Appearance fabrication using additive manufacturing is a grow-

ing research topic, where researchers target different technologies

and appearances [Hullin et al. 2013].

Multi-material jetting [Sitthi-Amorn et al. 2015] (e.g., UV-sensitive

resin droplets jetting) is the manufacturing technology that offers

the most control over the appearance of an object, as many colors

and materials are available and can be combined in the same part.

One drawback of this fabrication process is that the inks are par-

tially opaque, implying that the surface’s colors are blurred. Several

works [Babaei et al. 2017; Rittig et al. 2021; Sumin et al. 2019] opti-

mize the choice of inks and strive to reproduce color faithfully by

simulating light propagation in the object and modifying its volume

composition. Beyond colors, Ansari et al. [2020] reproduced input

spectral images using a data-driven model trained on a large dataset

of prints made of a selected set of inks. Piovarči et al. [2020] pro-

posed a method to control the roughness (gloss property) of a given

2.5 D object by introducing new printing hardware that sprays vis-

cous varnishes on the object’s surface. They achieved high-quality

results, but the method is limited to isotropic appearance.

Unfortunately, multi-material jetting costs an order of magnitude

higher than material extrusion (e.g., FFF) or layer solidification (e.g.,

stereolithography or SLA). Song et al. [2019] targeted an affordable

fabrication technology and proposed a color mixing method using

FFF. This enables color printing at a low cost, using commonly

available hardware and materials.
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Fig. 4. Trajectories’ directions angles increasing at a constant rate along the

𝑥 directions. Contrary to continuous deposition (right, using our method),

travels can leave unwanted but visible traces (left, using the method of

Tricard et al. [2021]). This is worsened on the left by a much larger number

of singularities.

Regarding anisotropic light scattering, several works control

the shape of the BSDF by generating and manufacturing micro-

surfaces (microfacets) with user-specified distributions of normals

(or heights). These works used different fabrication processes: micro-

milling [Weyrich et al. 2009], material jetting [Lan et al. 2013; Rouiller

et al. 2013], stereolithography [Luongo et al. 2020], and photolithog-

raphy [Levin et al. 2013]. They demonstrate precise control of ap-

pearance, but one major limitation of these methods is the need for

many microfacets in a microscopic spatial element (e.g., one square

millimeter) to obtain spatially stable surface roughness statistics.

We observe that we can instead make the most of a specific prop-

erty of FFF: the extruded material readily presents an anisotropic

roughness. We can thus avoid the micro-surface generation step

and the high spatial resolution constraint. Recent works [Bedel et al.

2022; Tricard et al. 2021] have also observed that property without

precisely quantifying it. In our work, we experimentally verify this

observation with roughness measurements in Section 3.

Tricard et al. [2021] demonstrated the possibility of producing a

controlled anisotropic appearance. However, the proposed optimizer

is heuristic and does not support alignment and sparse directional

constraints. It also creates a high number of singularities – forks in

trajectories – damaging the print quality, as shown in the compari-

son Figure 4.

2.2 Dense infills with orientable trajectories

Densely filling an area with material beads is a standard operation in

additive manufacturing [Livesu et al. 2017]. However, in our setting,

we need to tightly control the orientation of the deposition paths

to influence the anisotropy direction. Dense and orientable infills

can be obtained by optimizing a continuous scalar field, where tra-

jectories are extracted as iso-values [Fang et al. 2020; Steuben et al.

2016; Tricard et al. 2021]. A uniform subdivision can also be used

to recover a uniform or controlled spacing [Elber and Cohen 1990;

Etienne and Lefebvre 2020; Ezair et al. 2018]. While orientation is

a key ingredient to our method, the final surface quality should

also be free of printing defects. However, defects arise when deposi-

tion paths are not continuous, especially at trajectories’ endpoints

(see Figure 4). These artifacts can be alleviated by filling a closed

56 mm

𝑥

𝑦

5
6
m
m

Fig. 5. Specifications of the printed samples for roughness measurements.

Left : picture of blue PLA (0.8 mm bead width) taken with a flash, showing a

typically elongated highlight (green rectangle) of glossy anisotropic material

(Figure 3). In the red inset, we observe that a single filament exhibits an

anisotropic appearance. Right : a schematic representation of our samples.

The width of the printing trajectory black lines matches the width of a single

bead in the photography. The printing directions are shown with arrows.

We define the 𝑥 direction as the zig-zag direction. The purple L represents

the 𝑥 and 𝑦 evaluation lengths (five times the sampling length).

space with a single, continuous, and cyclic circuit, avoiding spurious

deposits and unwanted traces.

Obtaining controllable, dense, and oriented cyclic infills is a chal-
lenging endeavor considered by few works. Zhao et al. [2016] gener-

ated connected Fermat spirals, but the cycle’s orientations can only

be parallel to the contour. The method of Pedersen and Singh [2006]

offers controls similar to our goals by growing a circle in the shape’s

interior. The method of [Bedel et al. 2022] (Hamiltonian Cycle) is

the closest to ours in terms of control and objective. However, the

Hamiltonian Cycle approach is still far from ideal as it does not scale

well (Table 4) and does not deliver satisfactory quality for our target

application (Figure 12). In particular, the method cannot create long

lines without turns. Our algorithm gains up to three orders of magni-

tude in execution time and better follows the input orientation field.

From a technical point of view, the Hamiltonian Cycle approach

and ours are fundamentally different: Bedel et al. [2022] start by

covering the input space with a graph to obtain an initial Hamilton-

ian cycle, which is subsequently iteratively refined. In contrast, our

approach works with a sum of sinusoidal functions representing the

paths. Optimizing its parameters — directions and phases — leads

to improvements in time and quality.

3 ANISOTROPIC APPEARANCE CHARACTERIZATION

To characterize the roughness anisotropy of an extruded filament,

we selected five filament samples: clear PETG, red PETG, gold PLA,

blue PLA, and purple PLA. We observed that filaments with minor

surface roughness maximize the anisotropy, as the commercially

available PETGs and glossy PLAs selected here. We printed two

square-shaped samples (56
2
mm

2
) for each filament sample with

commercially available, brass coated, 0.4 and 0.8 mm nozzles. The

bead width was set to nozzle extrusion hole width, and the layer

height was set to bead width over two. Each layer was filled with a

zig-zag (see Figure 5). We printed on a heating bed with a smooth

PEI (Polyetherimide) sheet surface.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Table 1. Roughness (RMS slope) measurements characterize the anisotropic

appearance. Measurements on the nozzle’s and bed’s sides are on each cell’s

top and bottom, resp. Each triplet (𝜎𝑥 , 𝜎𝑦, 𝜎𝑦/𝜎𝑥 ) has the following layout:
the roughnesses along the 𝑥 and 𝑦 directions, then their ratio.

Nozzle 0.4 Nozzle 0.8

Clear PETG (0.88, 11.63, 13.2) (0.25, 14.20, 56.8)
(2.36, 11.78, 4.9) (1.90, 18.26, 9.6)

Red PETG (6.20, 12.98, 2.0) (1.36, 4.60, 3.3)
(2.34, 18.82, 8.0) (2.23, 21.29, 9.5)

Gold PLA (8.93, 15.60, 1.7) (6.36, 16.66, 2.6)
(2.43, 9.72, 4.0) (2.19, 19.34, 8.8)

Blue PLA (2.36, 17.32, 7.3) (2.31, 17.69, 7.6)
(2.56, 13.54, 5.2) (2.43, 20.90, 8.6)

Grey PLA (4.46, 15.81, 3.5) (4.38, 11.92, 2.7)
(2.57, 12.46, 4.8) (2.38, 19.16, 8.0)

For PETG filaments, we printed at 235
◦
C, and for the PLA fil-

aments, we printed at 210
◦
C. With the 0.8 mm nozzle, the speed

was 20 mm/s for the first layer and then 30 mm/s. With the 0.4 mm

nozzle, the speed was doubled.

We use a mechanical profilometer with a three microns radius tip

to perform the roughness measurements (DektakXT from Bruker).

This tool measures the heights along a given direction, given a pri-

mary height profile. To characterize the anisotropy, we acquired a

profile along the tangent and bitangent of a printed trajectory (𝑥

and 𝑦 directions in Figure 5). The primary height profile is filtered

with a 25 `m cut-off length, given a roughness profile. Dong et

al. [2016] show that high-frequency filtering of details is essential

for characterizing appearance. From the roughness profile, the mea-

surement tool computes the square average of the local slope (Rdq

parameter [Nyhuis 2016], also called the root mean square (RMS)

slope, and defined by the international standard ISO 4287) within

a sampling length of 0.8 mm. We used the default five sampling

lengths for evaluation (purple lines in Figure 5). According to ISO

4287, the roughness parameter is computed on sampling lengths —

here, five disjoint successive segments — and then averaged auto-

matically by the profilometer.

For the ten samples, we measured the Rdq roughnesses (𝜎𝑥 , 𝜎𝑦 )

along the 𝑥 and 𝑦 direction, respectively. We chose this partic-

ular roughness parameter among others because microfacet BS-

DFs [Heitz 2014] use it.

We performed each measure on both sides of the printed sam-

ples (nozzle and bedside) at a random position around the part’s

center. Roughness measurements are reported in Table 1. The ratios

between 𝜎𝑦 and 𝜎𝑥 reveal that the FFF printer’s nozzles extract

material with anisotropic roughnesses (lowest roughness along the

printing direction). These high ratios explain the typically elongated

highlight visible in Figure 5 and predicted by physically based light

scattering models (Figure 3).

In summary, we have experimentally verified that the direction

of deposition paths strongly correlates with surface roughness and

consequently affects the anisotropic appearance. Considering this

observation, in the next section, we present how to 3D print an

𝜏

0

𝐺 (x)
Eq. 13

𝜏

Fig. 6. We implicitly represent trajectories by an oscillating field whose

target period is the input trajectory interspace parameter. The zero iso-

curves are the trajectories, and the field gradients are orthogonal to them.

anisotropic appearance with an arbitrary direction of anisotropy by

controlling the orientation of a dense infill cycle.

4 OBJECTIVES, INPUTS, AND KEY IDEAS

This section gives our approach’s objectives, inputs, and essential

ideas. The main objective is to fabricate an anisotropic appearance

with arbitrary anisotropy directions by capitalizing on the observa-

tion that extruded filament already exhibits an anisotropic appear-

ance (see Section 3). To this end, the orientation of the deposition

paths must follow the input anisotropy directions map as closely

as possible. In addition, to avoid surface defects caused by nozzle

travels, the deposition must ideally follow a continuous path.

The first key idea is to use an implicit representation of the tra-

jectories, defined as the zero-level set of an oscillating scalar field

with a target period of two times the trajectory interspace 𝜏 (see

Figure 6). This has a twofold advantage. Firstly, the algorithm opti-

mizes using an implicit representation of the paths, which provides

intrinsic topology changes compared to an explicit representation

(e.g., polygonal curves). Secondly, extracting the zero isolines with

the marching squares algorithm (2D marching cubes [Lorensen

and Cline 1987; Wyvill et al. 1986]) produces a finite set of cycles

without self-intersections, providing proper handling of the domain

boundary. This property is crucial because it allows us to exploit the

second key idea: a finite set of disjoint cycles can be transformed

into a single cycle without self-intersections [Kahng and Reda 2004].

As shown in Figure 5, going to the right or the left when ex-

truding material gives the same anisotropic appearance. Hence, the

nozzle can go in one direction or the other along the cycle. We

use a line field to represent this property and to define user ori-

entation constraints. A line field, also called a 2-directional field,

specifies two directions (d,−d) for each domain point. This field

type is rotationally-symmetric and is named a RoSy field in the lit-

erature [Ray et al. 2008]. Detailed information on directional fields

is available in Vaxman et al. [2016].

It can also be helpful to only define vectorial shapes with bound-

aries that smoothly diffuse their normal inside their interior, similar

to diffusion curves for smooth color gradients [Orzan et al. 2013].

For this reason, our input specifies explicit lines and three additional

specific modes. In Figures 1 and 8, we use the red, blue, and yellow

colors to represent them. They indicate areas where the trajectories’

orientations must be the smoothest (yellow), the smoothest and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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p𝑖 p̃𝑖 𝑗 ∈ N (𝑖)

𝑖 𝑗4

𝑗0

𝑗3

𝑗1 𝑗2

𝑗5 𝑗6 𝑗7

𝜏

Fig. 7. The domain of the 2D shape is uniformly sampled with points p
with spacing 𝜏/2 (left). Then a small perturbation is applied to them, giving

perturbed points p̃ (middle). The neighborhood N(𝑖 ) of a vertex 𝑖 is the set
of eight vertices belonging to a cell next to the one of 𝑖 (right).

parallel to the boundary (red), or the smoothest and orthogonal

to the boundary (blue). We call the direction mode map the three

direction modes combined with the anisotropy line map giving the

line orientation in the range (−𝜋/2, 𝜋/2]. This map is visible in

Figures 1 and 8, which is one of our program inputs.

Shapes are transformed into a signed distance field (SDF) as it

is a convenient representation for additive manufacturing: It nat-

urally defines sides: interior with negative values, boundary with

zero values, and exterior with positive values. Note that an explicit

geometry can be simply and efficiently transformed into a SDF [Baer-

entzen and Aanaes 2005]. In the next section, we describe the cycle

generation algorithm.

5 CYCLE GENERATION ALGORITHM

This section details each step of the cycle generation. See Figure 8

and Algorithm 1 to see an overview.

ALGORITHM 1: Cycle generation (SDF, directionModeMap, 𝜏 )

𝑃, 𝑃 ← GeneratePoints(Bounds(SDF), 𝜏 )
𝐿 ← PointLineInit(𝑃, SDF, directionModeMap, 𝜏 )
𝐿 ← SmoothLines(𝑃, 𝐿) // Sec. 5.1

Φ← PointPhaseInit(𝑃, SDF) // Sec. 5.2

𝑆 ← (𝑃, 𝐿,Φ) // Create sine field

𝑆 ← AlignSines(𝑆 ) // Sec. 5.2

𝐶 ← MarchingSquare(𝐺 (𝑃 − 𝜏/4, 𝑆 ) ) // Sec. 5.4

𝐶𝑠 ← StitchCycles(𝐶 ) // Sec. 5.5, Alg. 2

Domain sampling with points. A uniform grid partitions the do-

mainwith a cell width equal to 𝜏/2. Each cell contains a vertex 𝑖 ∈ V ,

where |V| denotes the total number of vertices. Each vertex 𝑖 has

an associated point p𝑖 ∈ R2 corresponding to the center of the cell

and a line d𝑖 ∈ 𝑆1 which is a representative normalized direction of

a line.

Each point sample p𝑖 is perturbed with a random translation of

a small fraction of the target spacing 𝜏 , given perturbed points p̃𝑖
(Figure 7). Even if the perturbation is not strictly necessary for the

method to work, we observed that it helps for optimization conver-

gence by breaking ties due to perfect symmetries (i.e., bringing the

perturbed points into a general position).

The matrices 𝑃 B (p𝑖 )𝑖∈V , 𝑃 B (p̃𝑖 )𝑖∈V , and 𝐿 B (d𝑖 )𝑖∈V of

shape |V|×2 represent the points, the perturbed points, and the line

field, resp. Finally, we define the neighborhoodN(𝑖) of a vertex 𝑖 as
the eight vertices 𝑗 whose cell surrounds the 𝑖’s cell.

Points’ line initialization. A line 𝑑𝑖 is initialized with a default

value for each domain sampling point p̃𝑖 . For points inside the

boundary area {x | SDF(x) ∈ [−𝜏 ;−𝜏/2]}, the lines 𝑑𝑖 are set to
the normalized gradient of the SDF and are constrained, i.e., the

optimizer will not modify them during the smoothing. In Figure 8.1,

the default line orientation is set to (1, 0)𝑇 .

5.1 Compute the smoothest line field

d

−d
d1

−d2

−d1

d2

𝑆1

Suppose the user specifies zones where the

smoothest lines must be computed, e.g., paral-

lel or orthogonal to the border. In that case, the

boundary’s lines are diffused inside the shape by

calculating the smoothest line field with respect

to the following metric. The smoothness energy

𝐸𝑙 of a line d with𝑚 other lines represented by

the𝑚 × 2 matrix 𝐷 B (d𝑗 )1≤ 𝑗≤𝑚 is defined as [Paris et al. 2008]

𝐸𝑙 (d, 𝐷) B −d𝑇𝐷𝑇𝐷d. (1)

The term 𝐷𝑇𝐷 is the covariance matrix of the data represent-

ing the 2𝑚 endpoints d and −d. The directions’ symmetry implies

that the mean is zero. The term d𝑇𝐷𝑇𝐷d is the variance of the

projected data vectors on d. The line d that aligns the most with

the𝑚 other lines 𝐷 is the direction of maximum variance, which

is the eigenvector of the covariance matrix 𝐷𝑇𝐷 with the highest

eigenvalue

d B argmin

d∈𝑆1
𝐸𝑙 (d, 𝐷). (2)

We define d as the average of𝑚 lines 𝐷 .

The smoothness of the line field 𝐿 is the sum of each local smooth-

ness energy 𝐸𝑙 of the line d𝑖 with its weighted neighborhood

𝐸𝐿 (𝐿) B
∑︁
𝑖∈V

𝐸𝑙

(
d𝑖 , (𝑤𝑖 𝑗d𝑗 ) 𝑗∈N(𝑖 )

)
. (3)

The neighboring lines d𝑗 of a vertex 𝑖 can beweighted bymultiplying

each adjacent direction d𝑗 by a scalar 𝑤𝑖 𝑗 . We chose to spatially

weight each neighbor 𝑗 with a 2D Gaussian evaluated at p̃𝑗 with a

mean set to p̃𝑖 and a standard deviation set to 𝜏/6.
The line of a vertex 𝑖 is set to the average of its neighbors to

decrease the line field energy 𝐸𝐿 :

d𝑖 B argmin

d𝑖 ∈𝑆1
𝐸𝑙

(
d𝑖 , (𝑤𝑖 𝑗d𝑗 ) 𝑗∈N(𝑖 )

)
. (4)

Only the eight neighbors of the vertex 𝑖 are implied in the covariance

matrix computation.

This operation is done for all the lines to obtain an updated line

field that further decreases this energy.

𝐿 ← 𝐿, where 𝐿 B (d𝑖 )𝑖∈V . (5)

We iteratively decrease the energy by repeating the update oper-

ation several times, except for the constrained lines that are not

updated. This approach is similar to the diffusion of a quantity in-

side an area: a process that has a slow convergence and tends to get

stuck in local minima. As demonstrated in the context of quad and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:6 • Chermain et al.

SDF

1. Initialize the lines

4. Compute the contours to obtain cycles
5. Stitch the

cycles to a single cycle

6. Repulse too closed trajectories

2. Compute the smoothest lines. Constrain

them with the direction mode map

3. Align oscillating functions

−𝜋
2

𝜋
2

Parallel to the border

Orthogonal to the border

Smoothest

Fig. 8. Overview of the different steps of our cycle generation algorithm. A line field is initialized and smoothed (1, 2). It directs an aligned sine field (3) whose

contours (4) are stitched to form a cycle (5). Trajectories that are too close are repulsed (6).

hexahedral meshing [Gao et al. 2017; Jakob et al. 2015], a multires-

olution hierarchy can alleviate these drawbacks, so we use one to

accelerate the computations (Section 5.3).

The smoothed lines are kept in the red areas. They are rotated by

90 degrees in the blue zones, given parallel and orthogonal trajecto-

ries to the boundary at the end (see Figure 8).

The lines inside the color gradient areas in the line mode map

are set with the prescribed directions encoded as a polar angle

in (−𝜋/2, 𝜋/2]. A 90 degrees rotation is applied to them because

each line indicates the orientation given the highest variation in the

oscillating scalar field representing the trajectories.

All the lines are constrained at this point, except in the yellow

areas, as these zones specify unconstrained lines. In Figure 8.2, we

kept the smoothest lines as the default orientation in the yellow

space.

5.2 Align periodic functions

Our method is based on an implicit representation of the trajectories,

defined as the zero values of an oscillating scalar field (Figure 8.3).

To obtain this scalar field, we associate a phase 𝜑𝑖 ∈ (−𝜋, 𝜋] to
each vertex 𝑖 , which allows us to define a local oscillating function

around each point p̃𝑖 . The field of phases is denoted Φ B (𝜑𝑖 )𝑖∈V ,

p̃𝑖

d𝑖
1/𝑓

p̃ 𝑗

d 𝑗

p̃𝑖

d𝑖

p̃ 𝑗

d 𝑗

Fig. 9. The sine wave of the vertex 𝑖 is not aligned with its neighbor 𝑗 (left).

By shifting the phase of 𝑖 , the two sine waves can be aligned (right).

and the sine field 𝑆 is represented by the perturbed points 𝑃 , the

line field 𝐿, and the phases Φ.
We must align the local oscillating functions locally to have tra-

jectories at regular intervals. In different areas of computer graphics,

oscillating function alignment has been used for surface parameter-

ization [Ray et al. 2006] or synthesizing stripe patterns on triangu-

lated surfaces [Knöppel et al. 2015].

The sine wave 𝑠𝑖 is a local periodic function around the point p̃𝑖

𝑠𝑖 (x) B sin(2𝜋 𝑓 (x − p̃𝑖 ) · d𝑖 + 𝜑𝑖 ), (6)

where 𝑓 is the signal’s frequency, fixed to 1/(2𝜏). This function is

plotted in Figure 9 with a higher frequency for illustration purposes.
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We define the alignment energy 𝐸𝑠 (𝑖, 𝑗) of the sine wave of vertex
𝑖 with a vertex 𝑗 as∫ 1

𝑓

0

(
sin

(
sgn(d𝑖 · d𝑗 )2𝜋 𝑓

(
𝑥 − 𝑝⊥𝑗

𝑖

)
+ 𝜑𝑖

)
− sin

(
2𝜋 𝑓 𝑥 + 𝜑 𝑗

) )2
d𝑥,

(7)

where sgn(𝑥) is the sign function (1 if 𝑥 > 0, -1 otherwise) and

where 𝑝
⊥𝑗
𝑖
B (p̃𝑖 − p̃𝑗 ) · d𝑗 is the scalar projection of the vector

(p̃𝑖 − p̃𝑗 ) onto the direction d𝑗 . When the two sines are in opposite

directions (d𝑖 · d𝑗 ≤ 0 and sgn = −1), 𝑖’s phase is rolling in 𝑗 ’s

inverse direction (Figure 9).

The energy term 𝐸𝑠 measures the difference between the pro-

jected 1D sine of 𝑖 onto 𝑗 ’s line and the sine of 𝑗 and is minimized

when the two sines are equaled, i.e., when the phase of 𝑖 is

𝜑𝑖 𝑗 B argmin

𝜑𝑖 ∈ (−𝜋,𝜋 ]
𝐸𝑠 (𝑖, 𝑗) =

{
2𝜋 𝑓 𝑝

⊥𝑗
𝑖
+ 𝜑 𝑗 , if d𝑖 · d𝑗 > 0

−(2𝜋 𝑓 𝑝⊥𝑗
𝑖
+ 𝜑 𝑗 ) + 𝜋, otherwise.

(8)

With a measure of how a pair of sine waves are aligned, we can

now define the alignment energy 𝐸𝑆 of the sine field 𝑆 . The energy

𝐸𝑆 is the sum of each local alignment energy 𝐸𝑠 of each sine 𝑖 with

its neighborhood

𝐸𝑆 (𝑆) B
∑︁
𝑖∈V

∑︁
𝑗∈N(𝑖 )

𝑤𝑖 𝑗 |d𝑖 · d𝑗 |𝐸𝑠 (𝑖, 𝑗) . (9)

We weigh each neighbor 𝑗 with the 2D Gaussian used for the line

optimization. In addition, each neighbor is weighted by the absolute

value of the dot product |d𝑖 · d𝑗 | to encourage alignment between

vertices having similar orientations. Sine waves with orthogonal

directions cannot be aligned.

The same strategy used for the lines is employed here to decrease

the sine field energy 𝐸𝑆 and align the oscillating functions. We

locally minimize the energy of vertex 𝑖 with

𝜑𝑖 B Arg
©«

∑︁
𝑗∈N(𝑖 )

𝑤𝑖 𝑗 |d𝑖 · d𝑗 | exp(𝚤 𝜑𝑖 𝑗 )
ª®¬ , (10)

and we update the phase field by reducing the energy of all the

vertices

Φ← Φ, where Φ B (𝜑𝑖 )𝑖∈V . (11)

The phases inside the boundary area are initialized with the

value 𝜋 (SDF(x)/𝜏 + 1/2) to have trajectories that follow the shape’s

boundary, with an offset of half a nozzle inwards. These phases are

constrained before the alignment process, i.e., they are not updated.

As it is a diffusion process, the convergence is slow, and we

accelerate it again using a multiresolution approach.

5.3 Multiresolution grid

Multiresolution grids are standard in numerous domains for solv-

ing linear systems, image processing, fluid simulations, etc. In our

situation, lines or phases must diffuse inside the shape (Sections 5.1

and 5.2), and a simple hierarchy quickly propagates information in

the domain.

P(𝑖𝑁
0
) = { 𝑗0, 𝑗1, 𝑗2, 𝑗3}R( 𝑗𝑘 ), 𝑘 ∈ {0, 1, 2, 3} = 𝑖𝑁

0

𝑆𝑁 𝑆𝑁−1𝑆𝑁−1 restrict

𝑖𝑁
0

𝑗0 𝑗1

𝑗2 𝑗3

𝑗0 𝑗1

𝑗2 𝑗3

prolong

Fig. 10. Illustration of the restriction and prolonged operations used to

accelerate the sines’ alignment. A sine field 𝑆𝑁 −1 with two constrained

(red) and unconstrained (yellow) vertices is restricted and then prolonged.

Restrict. The sine field 𝑆0 B
(
𝑃0, 𝐿0,Φ0

)
is successively restricted

into a series of sine fields 𝑆𝑛 B
(
(p̃𝑖𝑛 ), (d𝑖𝑛 ), (𝜑𝑖𝑛 )

)
, 𝑖𝑛 ∈ V𝑛

with

0 ≤ 𝑛 ≤ 𝑁 until the coarsest sine field, 𝑆𝑁 . Each level is de-

fined recursively, starting from level zero. A sine field at level 𝑛

has vertices/cells 𝑖𝑛 ∈ V𝑛
: Its number of vertices/cells along the 𝑥

and 𝑦 axes is the power of two 𝐵/2𝑛 , where 𝐵 is also a power of

two, giving the side’s number of cells at level zero. A vertex 𝑖𝑛+1

at level 𝑛 + 1 is prolonged to four adjacent vertices P
(
𝑖𝑛+1

)
at

level 𝑛. Inversely, a prolonged vertex 𝑗 ∈ P
(
𝑖𝑛+1

)
is restricted to

its original vertex 𝑖𝑛+1, i.e., 𝑖𝑛+1 = R ( 𝑗). A point p̃𝑖𝑛+1 at level 𝑛 + 1
is the barycenter of its four corresponding points at level 𝑛, i.e.,

p̃𝑖𝑛+1 B 1/4∑𝑗∈P(𝑖𝑛+1 ) p̃𝑗 . A line d𝑖𝑛+1 at level 𝑛 + 1 is the av-

erage of its four corresponding lines (d𝑗 ) 𝑗∈P(𝑖𝑛+1 ) at level 𝑛, i.e.,
d𝑖𝑛+1 B argmind∈𝑆1 𝐸𝑙

(
d,
(
d𝑗
)
𝑗∈P(𝑖𝑛+1 )

)
. A phase𝜑𝑖𝑛+1 at level𝑛+1

is the average of its four corresponding phases at level 𝑛

𝜑𝑖𝑛+1 B Arg
©«

∑︁
𝑗∈P(𝑖𝑛+1 )

exp

(
𝚤 𝜑𝑖𝑛+1 𝑗

)ª®¬ . (12)

Only constrained lines and phases are averaged if any prolonged

vertices P
(
𝑖𝑛+1

)
have a constrained line or phase. A restricted ver-

tex has a constrained quantity (line or phase) if at least one of its

prolonged vertices has a constrained quantity (see Figure 10).

Prolong. Once the multiresolution sine field is built from the finest

to the coarsest sine field 𝑆𝑁 , the quantities return to the finest res-

olution. For each level 𝑛, except the coarsest one, we smooth the

directions with Equation 5 and align the sines with Equation 11

several times. Then, the quantities are prolonged to level 𝑛 − 1,

i.e., d𝑖𝑛−1 B dR(𝑖𝑛−1 ) and 𝜑𝑖𝑛−1 B 𝜑𝑖𝑛−1R(𝑖𝑛−1 ) , except when con-

strained. Figure 10 illustrates the restriction and prolonged opera-

tions.

5.4 Sine field evaluation and contouring

Sine field evaluation. After the minimization process, the sine

field 𝑆 is evaluated. We use the following function inspired by the

noise synthesizing domain [Lagae et al. 2009; Tricard et al. 2019] to

evaluate the oscillating sine field 𝑆 at an arbitrary position

𝐺 (x, 𝑆) B
∑︁

𝑖∈N(𝑖𝑥 )∪𝑖𝑥
𝑤𝑖 (x)𝑠𝑖 (x)/

∑︁
𝑖∈N(𝑖𝑥 )∪𝑖𝑥

𝑤𝑖 (x), (13)
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where 𝑤𝑖 is a 2D Gaussian with mean p̃𝑖 and standard deviation

𝜏/6. The term 𝑖𝑥 is the vertex of the grid’s cell of the evaluation

point x. The Gaussian has zero value after three standard deviations,

allowing us only to evaluate the sine waves in the x’s neighborhood.
A plot of this function is visible in Figure 8.

Extraction of cycles. The marching square algorithm uses the grid

defining the points (Figure 7) with a shift of 𝜏/4. The sine field 𝑆 is

evaluated for each grid vertex with the previous equation 𝐺 . The

scalar field’s values are set to 2SDF(x)/𝜏 + 1 in the zone defined

as {x | SDF(x) ∈ [−𝜏/2; 0]} and one at the shape’s exterior. These
particular settings are essential to output a set of cycles and prevent

trajectory extraction in the shape’s exterior minus a margin of 𝜏/2.
We represent the collection of cycles as a graph 𝐶 = (V𝐶 , E𝐶 )

with vertex points 𝛾 : V𝐶 → R2. Its number of cycles, vertices,

and edges are denoted |𝐶 |, |V𝐶 |, and |E𝐶 |, resp. Each edge 𝐼 ∈ E𝐶
connects two vertices, 𝑖1 and 𝑖2. We represent the 𝑘th cycle as the

subgraph 𝐶𝑘 = (V𝐶𝑘
⊂ V𝐶 , E𝐶𝑘

⊂ E𝐶 ), 𝑘 ∈ [1, |𝐶 |].

5.5 Stitch the cycles

The cycles 𝐶 obtained with the contouring algorithm are stitched

together to form a single cycle 𝐶𝑠 . The algorithm is recursive: two

cycles are matched and then stitched, and this operation is done

|𝐶 | − 1 times, where |𝐶 | is the number of cycles.

Matching two cycles is defined as the finding operation of a pair

of edges belonging to each other, giving a stitch without intersection

with any of the cycles’ edges. The patching energy of an edge 𝐼 ∈ E𝐶
with 𝐽 ∈ E𝐶 is

𝐸𝑝 (𝐼 , 𝐽 ) B min( | |𝛾𝑖1 − 𝛾 𝑗2 | | + | |𝛾𝑖2 − 𝛾 𝑗1 | |, | |𝛾𝑖1 − 𝛾 𝑗1 | | + | |𝛾𝑖2 − 𝛾 𝑗2 | |)
− | |𝛾𝑖1 − 𝛾𝑖2 | | − | |𝛾 𝑗1 − 𝛾 𝑗2 | | (14)

and gives a non-intersecting patch (𝐼 , 𝐽 ) for the least cost, as noted
by Kahng and Redha [2004]. We use this energy in Algorithm 2

to recursively match and then stitch two edges while the number

of cycles is not one. We first find the cycle 𝐶𝑘 with the smallest

number of edges. Then, for each of its edges (𝐼 ∈ E𝐶𝑘
), we compute

the patching energy with the neighboring edges not belonging to

E𝐶𝑘
. We noteN(𝐶𝑘 ) the neighboring edges of cycle𝐶𝑘 . A result of

the algorithm is visible in Figure 8.5, where the input was the cycles

in Figure 8.4.

ALGORITHM 2: Stitch the cycles𝐶 into a single cycle𝐶𝑠 .

while |𝐶 | > 1 do
𝑘 ← argmin𝑘∈ [1,|𝐶 | ] | E𝐶𝑘

|
𝐼 , 𝐽 𝐼 = argmin𝐼 ∈E𝐶𝑘

and 𝐽 ∈N(𝐶𝑘 ) 𝐸𝑝 (𝐼 , 𝐽 )
𝐶 ← StitchEdges(𝐼 , 𝐽 𝐼 )

end
𝐶𝑠 ← 𝐶

5.6 Repulse trajectories and compute variable widths

𝛾𝑖

𝛾
𝑗→
𝑖

𝛾 𝑗
Repulse trajectories. In a few areas, the inter-

space between extracted contours can be small

(< 𝜏/2), as shown in the purple inset in Figure 8.

To avoid this issue, we repulse the cycle’s points

within a 𝜏/2 distance. Each point of the curves is on a unique edge

of the domain grid after the contouring algorithm and the stitching

modifies the connectivity, not the positions. We leverage the grid

configuration and particular vertex positioning to perform efficient

neighboring requests. We also constrain the points to their grid

edge to avoid self-intersection. To repulse the vertex position 𝛾𝑖 by

point 𝛾 𝑗 , we compute the intersection 𝛾
𝑗→
𝑖

of a 𝜏/2 radius circle

centered in 𝛾 𝑗 with 𝑖’s grid edge. This computation is only done

with neighboring vertices 𝑗 ∈ N→ (𝜔𝑖 ), where N→ (𝜔𝑖 ) is the set
of vertices respecting the condition | |𝛾 𝑗 − 𝛾𝑖 | | < 𝜏/2 and where

|N→ (𝜔𝑖 ) | is their number. To update the point of vertex 𝑖 we use

𝛾𝑖 ←
1

2

©«𝛾𝑖 + 1

|N→ (𝜔𝑖 ) |
∑︁

𝑗∈N→ (𝜔𝑖 )
𝛾
𝑗→
𝑖

ª®¬ . (15)

A repulsion iteration is the independent update of all the vertices.

Compute the trajectory’s variable width. The trajectory obtained

has a variable distance to neighboring curves, so a variable width

is computed to minimize overlaps and maximize space covering.

For each cycle’s vertex 𝑖 , we define its width 𝜔𝑖 as two times the

smallest circle radius tangent to𝛾𝑖 and passing through a cycle point

𝛾𝑐 as

𝜔𝑖 B argmin

𝛾𝑐 ∈N(𝛾𝑖 )
𝜔𝑖 (𝛾𝑐 ), where 𝜔𝑖 (𝛾𝑐 ) B

| |𝛾𝑖 − 𝛾𝑐 | |2
| det𝐴| . (16)

The term 𝐴 is the 2 × 2 matrix

[
𝑇𝑖 𝛾𝑖 − 𝛾𝑐

]𝑇
, where the first row

is the tangent at point 𝛾𝑖 . The termN(𝛾𝑖 ) is the set of points on the

edges (we use three point samples per cycle’s segment) within a 2𝜏

distance from 𝛾𝑖 . This formulation naturally ignores points close

along the curve [Yu et al. 2021]. In our implementation, we compute

𝜔𝑖 with points sampling the neighboring cycle segments and keep

the minimum width 𝜔𝑖 . This operation is done for all the cycle’s

vertices, and then the values are clamped in the printer’s achiev-

able bead widths range ([3/4𝜏, 2𝜏] for our printer). Distributions
of unclamped widths 𝜔𝑖 computed from cycles generated with our

method and the method of Bedel et al. [2022] are visible in Figure 14.

5.7 Implementation

We implemented the generation cycle algorithmwith the JAXPython

library [Bradbury et al. 2018].

Unified line and phase optimization. We chose to unify the line

and the phase update (Equations 4 and 10) into a single optimization

iteration. As a result, the SmoothLines() and AlignSines() functions

in Algorithm 1 are the same in our implementation. The phases re-

turned by SmoothLines() are ignored, and all the lines in AlignSines()

are constrained except in the yellow areas (areas indicating smooth

line field objective). The number of optimization iterations per level

in the multiresolution grid is set to 32 in our implementation.

Point perturbation. Each vertex 𝑖 is associated with a unique per-

turbed point p̃𝑖 B p𝑖 + r𝑖 where r𝑖 is a random translation of width

𝜏/10, i.e., the ith realization of the random variable following a bi-

variate uniform distributionU2

(
(−𝜏/10, 𝜏/10)2

)
. The value 𝜏/10 is

not a critical value; it is an epsilon chosen as a small fraction of the

target spacing 𝜏 .
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Table 2. Some properties of the results. From left to right: the size of the

bounding box of the object, the number of cells partitioning the domain,

the next power of two cell count, and the number of cycles stitched. The cell

count is square because it is a requirement of our optimizer implementation.

Size (mm) #cells #cells
2

#cycles

logo 200 × 90.5 1004 × 457 1,024
2

548

wave 170 × 114.8 854 × 579 1,024
2

495

brain 63.75 × 51.40 328 × 266 512
2

121

people 98.45 × 80.37 501 × 411 512
2

283

vary 42.54 × 170 216 × 853 1,024
2

260

Parallelization. The update operations of two different lines 𝑑𝑖
and 𝑑 𝑗 with Equation 4, or two different phases 𝜑𝑖 and 𝜑 𝑗 with

Equation 10, are independent. Consequently, we parallelize all line

and phase updates (Equations 5 and 11) for each iteration when min-

imizing energies 𝐸𝐿 and 𝐸𝑆 . The construction of the multiresolution

grid, the creation of contours with the marching square algorithm,

the repulsion of paths, and the calculation of path widths are also

parallelized in our implementation. The parallelization is done with

automatic vectorization using the vmap operator of JAX.

Complexity. The time complexity of each optimization iteration

is linear (𝑂 ( |V|) time, see the #cells
2
column in Table 2 for typical

values) with respect to the number of sampling domain points/cells.

The stitching part has quadratic complexity 𝑂 ( |𝐶 | |E𝐶 |), but this
operation is only done once. The time complexity is linear (𝑂 ( |V|)
time, see the #cells column in Table 2 for typical values) for the other

steps of the algorithm, i.e., the sine field evaluation, the marching

square, the point repulsion, and the width computation. The number

of cycle edges |E𝐶 | is proportional to the shape’s area. In the worst

case, e.g., when having only small isolated components, the number

of cycles |𝐶 | can increase linearly with the shape’s area. We report

the number of cycles |𝐶 | of our examples in Table 2. In general, the

timings heavily depend on the inputs, making it hard to draw a

simple trend with respect to the grid size.

Repulsion of trajectory points. We perform a fixed number of eight

iterations for the repulsion of trajectory points, so the process cannot

loop indefinitely. Vertices move half the distance to the target, and

the points are constrained to their grid edge.

Flow management. Flow management during deposition, espe-

cially in sharp turns, can produce uneven flow.We use the 3D printer

firmware Klipper to mitigate this issue, as it is designed to consider

accelerations and material pressure.

6 RESULTS

In this section, we provide numerical and experimental results.

We 3D printed five different results with a Creality CR-10 S Pro.

We used a brass-plated nozzle with a 0.4 mm extrusion hole width.

The nozzle temperature and velocity were set to 225
◦
C and 50 mm/s,

resp. Additional properties of each result can be found in Table 2.

The supplementary video is particularly helpful in assessing our

method’s dynamic visual effect on the surfaces when the light is

moving or when the object is rotating.

𝜋
2

−𝜋
2

Fig. 11. Thewave of Hokusai constrains the directions of the lines and gives

a detailed anisotropic appearance once printed with our method. The small

direction changes in the clouds have an impact on light reflections. Top:

printed cycles with 0.4 mm interspace objective. Bottom: the lines’ orienta-

tions map and cycles obtained with a 2.2 mm curve interspace objective.

Figure 1 (logo) was printed with a high gloss silver filament and

depicts a decorated SIGGRAPH logo. Figure 11 (wave) was printed

with silk blue PLA, and the line field was constrained with the art-

work The Great Wave off Kanagawa. Note that the artistic details are
finely developed and emerge naturally from the anisotropic appear-

ance. Creating such an effect by an artist would be challenging using

traditional mechanical brushing tools. Figure 12 shows the brain,

people, and vary results. brain was printed with a high gloss sil-

ver filament and uses a line field to convey a dynamic appearance.

people was printed with a gold PLA and considers a highly discon-

tinuous line field. We can appreciate the different reflectance of the

patches corresponding to different values of orientation. vary was

printed with silk blue PLA and uses a noise field ranging from an

isotropic to a fully anisotropic distribution of orientations.

Performance. We measure the execution times (Table 3) with an

Nvidia GeForce RTX 2080 Ti GPU and an Intel Core i7-4770K CPU

(3.50 GHz). All the algorithm runs on GPU, except for the stitching

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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𝜋
2

−𝜋
2

Fig. 12. The line fields of vary, people, and brain (from left to right, middle line) orient the extrusion trajectories. Printed parts were obtained with our method

(top) and Hamiltonian Cycle [Bedel et al. 2022] (bottom). Our trajectories better follow the prescribed line field, given smoother specular lobes.

Table 3. Detailed execution time for our dense cycle generation algorithm

using the GPU, except for the stitching step that uses the CPU. From left

to right: smoothing (only for logo) and sines alignment execution times,

stitching execution times, and execution times for the other steps.

Align Stitch Other steps Total

logo 3.89 s (24%) 10.05 s (63%) 2.08 s (13%) 16.02 s

wave 2.03 s (15%) 10.48 s (75%) 1.49 s (10%) 14.00 s

brain 0.70 s (21%) 1.02 s (31%) 1.54 s (48%) 3.26 s

people 0.75 s (15%) 3.06 s (60%) 1.26 s (15%) 5.07 s

vary 1.85 s (34%) 2.64 s (48%) 1.03 s (18%) 5.52 s

part, which uses the CPU. This step is the slowest because it has

quadratic complexity. The trajectory alignment and stitching are

as expensive as doing the other steps for small-size results like the

brain. The line smoothing operation is only done for the logo result.

Therefore its alignment execution time is almost twice that of the

wave, which is a similar-sized result.

Stress tests. In Figure 13, we show results obtained with a spatially-

varying frequency input: the frequency content of the line field and

the boundary decreases from left to right. The direction mode map

specifies four line modes: parallel to the border near the top and

the bottom, horizontal and vertical lines in the middle, and the

smoothest lines between these two areas. This configuration has

many nearby points with orthogonal directions constraints. We

stressed our algorithm by generating a cycle with a fixed nozzle

width 𝜏 of 0.4 mm for smaller and smaller shape sizes. At some

point, the sampling rate is insufficient to reconstruct all the details

of the line field and shape’s boundary, but our method still robustly

generates an output. The algorithm’s robustness stems from op-

timizing the parameters of the implicit representation, where the

Table 4. Absolute and relative execution times for both our method (multi-

threaded GPU and mono-threaded CPU) and Hamiltonian Cycle (partially

multi-threaded CPU).

Ours (GPU) Ours (CPU) Hamiltonian (CPU)

brain 3.26 s (×1) 12.67 s (×3.89) 275.44 s (×84.4)
people 5.07 s (×1) 19.27 s (×3.80) 632.89 s (×124)
vary 5.52 s (×1) 45.38 s (×8.22) 11017.7 s (×1995)

optimizer samples the constraints at the discrete evaluation points p̃.
Consequently, the resulting trajectories ignore the remaining fea-

tures of a high-frequency control field. This is visible in Figures 11

and 13, which contain more details than the trajectory spacing 𝜏

could capture. Figure 8 also shows a case where the geometry along

the boundary has a high frequency with respect to the target spac-

ing. Nevertheless, the generated path remains well-behaved along

these regions.

Comparison with [Bedel et al. 2022]. The brain, people and vary

results were generated with the method of Bedel et al. [2022] (Hamil-

tonian Cycle) by using their public code. We tried to generate the

wave, but all our trials with different seeds failed as the algorithm

did not terminate after 60 hours. In comparison, our method is ro-

bust: all the tests we performed always propose an oriented cycle

infill. The logo was not generated with Hamiltonian Cycle as their

method does not consider the line smoothing, as requested by the

yellow area in this result. We performed an execution time com-

parison in Table 4. As the area of the shape grows, the execution

time difference gets largely higher in our favor. This is due to the

quadratic complexity of their combinatorial optimizer.

In Table 5, we give the coverage and overlap areas as a percentage

of the shape’s area. The alignment energy of the trajectories with

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Parallel to the border
140 mm

−𝜋
2

0

Smoothest lines
70 mm 35 mm 17.5 mm

Fig. 13. Stress tests with a spatially-varying complexity. Left : The direction mode map and the boundary of the shape. Other columns: Photographs of the
printed shape, with its size divided by increasing powers of two. Our algorithm robustly generates a cycle even if the resolution cannot capture the details.

Table 5. Coverage, overlap, and alignment energy (Ham.→ Hamiltonian).

Coverage Overlap Alignment
Ours Ham. Ours Ham. Ours Ham.

logo 97.57 % NA 0.78 % NA NA NA

wave 96.75 % NA 0.86 % NA -0.958 NA

brain 95.91 % 94.43 % 1.13 % 3.30 % -0.930 -0.863

people 95.88 % 93.75 % 1.19 % 3.87 % -0.924 -0.844

vary 96.79 % 92.88 % 0.85 % 4.18 % -0.946 -0.838

the prescribed line field 𝐿𝑢 : R2 → 𝑆1 is also given. It is defined as

𝐴(𝐿𝑢 ,𝐶𝑠 ) B
1

2L(𝐶𝑠 )
∑︁

𝑖∈V𝐶𝑠

𝐸𝑙 (𝑇𝑖 , 𝐿𝑢 (𝛾𝑖 )𝑇 ) (L(𝐼1) + L(𝐼2)) (17)

where L(𝐶𝑠 ) is the length of the cycle and where L(𝐼1) and L(𝐼2)
are the lengths of the first and second edges, resp. The term 𝐿𝑢 (𝛾𝑖 )
is the non-oriented direction at position 𝛾𝑖 and 𝐸𝑙 is our measure

of line alignment. As the lines’ directions have scalar components

between -1 and 1, the alignment energy 𝐴 gives values between -1

(perfect alignment) and 0 (all the trajectories are orthogonal).

Pictures of the prints obtained with our method and the method

of Bedel et al. are also visible (see Figure 12). Their approach has

difficulty creating long trajectories following the input line field. As

a consequence, the appearance is less glossy and anisotropic. This is

partially explained by its lower coverage, higher overlap, and worse

alignment compared to our method (see Table 5).

The distribution of bead width is visible in Figure 14 for both our

method and Hamiltonian Cycle [Bedel et al. 2022]. Our algorithm

gives bead width distributions with a peak centered or below the

target spacing of 𝜏 = 0.4. The distribution is skewed to the left, and

the width density is concentrated above 𝜏/2.

Visual results. Figure 15 showsmore photographs of planar printed

results obtained with our method. We use the property that the tra-

jectory’s orientation is correlated to the amount of light scattered

toward the observer to create fake bas-reliefs. A 3D shape lighted

by a point light is rendered in grayscale mode, then the resulting

image is used to constrain all the lines. We also demonstrate that

mono-material QR codes can be manufactured with our method. In

black areas, lines are horizontal; in white areas, lines are vertical.

We used a nozzle with a 0.25 mm hole width for these results. There-

fore, we put many details in relatively small areas. For example, the

dragons’ scales are visible while representing a small fraction of the

model.

Visual flaws. There are some unintended visual flaws. Some points

are darker or brighter than their surrounding area. They originate

from sharp turns near singularities, as the turns locally produce

all directions of anisotropy. The height field is also not perfectly

flat due to possible under or overfilling. Consequently, areas with

constant orientations do not have a uniform aspect.

7 LIMITATIONS AND FUTURE WORK

Our method comes with limitations and prospects for future work.

The approach is inherently restricted to planar surfaces: a further

step is to study the case where the input is a 3D surface, probably

using a curved deposition method for printing [Etienne et al. 2019].

Moreover, the singularities of the implicit field can be placed in

unwanted locations that may impact the visual appearance. This

is apparent in Figure 1, where small marks are visible around the

singularities. Thus, our method could be further enhanced with

techniques that allow the user to place the singularities [Noma et al.

2022] to conceal them on the printed result.

Our approach is limited to high-contrast anisotropic appearances;

it is unfeasible to control the amount of anisotropic roughness. Thus,

it would be valuable to explore how further variations of the depo-

sition paths influence the directional surface roughness and how

this could be harnessed to reproduce different appearances. Eventu-

ally, we envision that surface roughness control through deposition

trajectories could be used for the inverse design of optical [Cai and

Shalaev 2010] or tactile metamaterials [Ion et al. 2018].

Our method could also be enhanced with FFF techniques that

allow varying gradients of color [Song et al. 2019]. Apart from artis-

tic and creative applications, our method could be applied in other

sectors that are already adopting 3D printing, such as in construc-

tion, automobile, and whiteware sectors, where it is common to

mechanically brush metal surfaces to give an aesthetic appeal to the

manufactured components
1
.

1
https://www.imoa.info/download_files/stainless-steel/euroinox/Finishes.pdf
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wavelogo

varybrain people

Our method Our method

Our method Our method Our method

Hamiltonian CycleHamiltonian CycleHamiltonian Cycle

Fig. 14. The trajectory width distribution of each result, obtained with our method and Bedel et al. [2022] when applicable (bottom). Our distribution’s peak is

around the target width 𝜏 = 0.4, and they are similar to the previous work’s distributions, except for the vary result where our trajectories are more aligned.

85 mm 90 mm 115 mm 97 mm

27 mm

Fig. 15. Photographs of planar printed parts using FFF, our cycle generator, and a nozzle hole width of 0.25 mm. The trajectories’ orientations are constrained

with a rendering of the corresponding 3D object (Stanford bunny, Suzanne, coarse mesh of the Utah teapot, Chinese Dragon) or the SIGGRAPH 2023 QR code.
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