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Figure 1: We propose to extend the capabilities of printers with three independent Z-axes (𝑧0, 𝑧1, 𝑧2), enabling a transition from
planar to non-planar deposition. The required modification is minimal, involving only an extension of the bed screws and rails.
We implemented this modification on the Ratrig V-Core 3.1, illustrated with its sliding balls (blue) moving along planar rails
(red). This ball-on-rail system enables precise non-planar printing (right).

Abstract
We present a novel approach to non-planar fused filament fabrica-
tion (FFF) aimed at making this advanced technique more accessible
to themaker and research communities. By enabling the print bed to
tilt using three independently actuated Z-axes, our method allows
standard 3D printers–such as the commercially available RatRig–to
perform non-planar printing with minimal hardware modifications.
Specifically, only simple extensions to the rails and bed screws are

SCF ’25, Cambridge, MA, USA
© 2025 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM Symposium
on Computational Fabrication (SCF ’25), November 20–21, 2025, Cambridge, MA, USA,
https://doi.org/10.1145/3745778.3766652.

required. This enables complex, curved-layer fabrication without
the need for expensive or sophisticated robotic arms.

We derive the kinematic model of the 3Z configuration and pro-
vide an open-source Python implementation that maps 3D toolpaths
to machine commands. We provide a detailed study of this machine
design’s strengths and limitations in the context of FFF, including
a build volume study, tolerance analysis, and technical details on
trajectory interpolation in machine space. Several models were 3D
printed using non-planar deposition to demonstrate the feasibility
of the proposed approach, with our experiments achieving bed tilts
of up to 30 degrees.

By lowering the entry barrier to non-planar FFF, we aim to em-
power a broader community of makers, educators, and researchers
to experiment, innovate, and contribute to the growing field of
advanced additive manufacturing.
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1 Introduction
In the rapidly advancing field of additive manufacturing, emerging
techniques continually push the boundaries of part customizabil-
ity and optimization. Non-planar fused filament fabrication (FFF),
in particular, has garnered significant interest for its potential to
enhance mechanical properties and manufacturing precision. By
aligning material layers and trajectories with surface geometry or
mechanical stresses, components can achieve increased stiffness
and toughness, reduced weight, and improved accuracy [Etienne
et al. 2019; Zhang et al. 2022]. The significance of non-planar print-
ing is demonstrated by its wide range of applications and computa-
tional methodologies, including shell printing [Mitropoulou et al.
2025], support-free printing [Dai et al. 2018; Zhang et al. 2022],
wireframe printing [Huang et al. 2016; Peng et al. 2016], carbon
fiber printing [Zhang et al. 2025], neural slicing [Liu et al. 2024],
and atomizing [Chermain et al. 2025]. While this substantial body
of research focuses on novel algorithms for generating toolpaths,
comparatively less attention has been given to the hardware re-
quirements essential for fabrication.

Non-planar FFF relies on 5-axis extrusion systems, and the ma-
jority of the aforementioned methods use robotic arms [Dai et al.
2018; Huang et al. 2016; Liu et al. 2024; Mitropoulou et al. 2025;
Zhang et al. 2022]. Robotic arms offer greater freedom of movement
compared to 3-axis printers, but they are an order of magnitude
more expensive and more technically complex, making them less
accessible. To democratize non-planar FFF, Open5X [Hong et al.
2022] introduced an affordable and accessible method to upgrade
standard 3-axis printers to 5-axis systems. This upgrade involves
adding a 2-axis rotating gantry that introduces two rotational de-
grees of freedom–an approach that has also been applied to Delta
printers [Peng et al. 2016]. While less complex than robotic arms,
adding two rotational axes still requires significant hardware modi-
fications.

Recently, the authors of Atomizer [Chermain et al. 2025] demon-
strated non-planar FFF using a commercially available 3D printer–
the RatRig V-Core 3.1 [RatRig 2025]–equipped with a three-point
kinematic bed. The printer’s two additional Z-axes, originally in-
tended for automatic bed leveling, were repurposed to tilt the bed
during printing. This effectively transformed the RatRig into a 5-
axis printer without hardware modification. However, the approach
had notable limitations, including a maximum tilt angle of only 5
degrees and a custom 3Z kinematic model that was not disclosed
in the original article.

To overcome these limitations, we:
• present the 3Z kinematic model with closed-form solutions,
mapping tool position and orientation to machine axis coor-
dinates;

• release an open-source Python implementation of the 3Z
kinematic model;

• propose a minimal hardware modification–extending the
rails and bed screws (Fig. 1, left)–that allows the bed to tilt
up to 30 degrees;

• validate the kinematic model and hardware modification by
performing non-planar FFF (Fig. 1, right); and

• provide an analysis of build volume, tolerance, and machine-
space interpolation in 3Z printers.

To facilitate bed tilting, each of the z-axes is equipped with a
ball-on-rail system that enables the bed to both rotate and slide, as
shown in Figure 1. This relatively inexpensive setup reduces the
cost of entry for non-planar printing and offers a robust option for
researchers and hobbyists alike to explore printing on sloped sur-
faces. The maximum tilt angle is limited to 30°, constrained by the
maximum outward extension of the rails. Nevertheless, this proof of
concept can inspire further innovation in 3D printing hardware de-
sign. Our kinematic derivation makes minimal assumptions about
the machine’s geometry, allowing experimentation with different
machine dimensions, rail directions, and bed shapes.

The robotics literature [Nayak et al. 2018; Yang et al. 2011] typi-
cally assumes simpler geometric settings than those of the RatRig.
To enable easier derivations, it often considers an equilateral trian-
gle formed by the spherical joints (the balls), with the rails pointing
toward its circumcenter. Since this is not the case for the RatRig, we
derive a kinematic model that accounts for arbitrary rail directions
and arbitrary 𝑥𝑦-positions of the spherical joints. Given the nonlin-
ear constraints and the large number of kinematic parameters, a
closed-form solution is non-trivial. Our geometric approach relies
on dimensionality reductions to obtain an efficient closed-form
solution.

2 Related Work
Standard FFF printers typically operate with three degrees of free-
dom (DoFs), enabling precise control over the nozzle’s position
in space while keeping its orientation constant. However, incor-
porating as few as two additional DoFs allows for control of the
nozzle orientation, significantly expanding the printer’s capabilities.
The ability to control both tool position and orientation facilitates
support-free printing, improvedmechanical properties, and reduced
staircase effects [Zhang et al. 2022]. Various strategies have been
explored to implement these additional DoFs [Yao et al. 2024].

Robotic Arms. Robotic arms equipped with six or more DoFs are
commonly utilized for FFF in academic research [Bhatt et al. 2020].
While these additional DoFs enhance flexibility, they also introduce
greater complexity, leading to higher costs, reduced precision, and
the need for more sophisticated control strategies [Sciavicco and
Siciliano 2012]. Specifically, in a chained-link system, such as a
robotic arm, angular errors accumulate across each joint, which can
only be mitigated with more precise motors and tighter manufac-
turing tolerances to achieve the same level of precision as simpler
machines [Hayati and Mirmirani 1985].
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5-Axis Machining Centers. Industrial machines with orientable
toolheads, traditionally developed for subtractive manufacturing,
have also been adapted for FFF [Gardner et al. 2018; Kaill et al. 2022].
Although they offer more precise tool positioning than robotic
arms, the misalignment between the extruder orientation and the
direction of gravity impacts material flow, resulting in reduced print
quality [Chen et al. 2025].

Custom 3D Printers. Standard 3D printers have been equipped
with two additional motors to control bed orientation, offering a
low-cost approach to non-planar printing [Hong et al. 2022; Teibrich
et al. 2015]. However, this design includes a singularity at the north
pole, resulting in large movements to achieve small changes in
orientation when the bed is nearly horizontal [Isa and Lazoglu
2019]. Another approach combines radial and rotational motion
using a core R-Theta printer [Bird 2025], although it is limited to
4-axis motion.

3Z Configuration. In machines utilizing CoreXY kinematics, the
nozzle operates within the 𝑥𝑦-plane, while the bed moves along
the 𝑧-axis. The bed height is typically controlled using one to three
lead screws driven by a single motor. However, when three inde-
pendently actuated lead screws are employed, it becomes possible
to control not only the bed’s height but also its orientation. Each
𝑧-axis is equipped with a carriage connected to the bed via a ball-
on-rail system (Fig. 1). As the carriages move along their respective
axes, the balls slide and rotate along the rails, resulting in bed tilt.
This technology has been commercialized by manufacturers such
as RatRig [RatRig 2025], and is primarily used for automatic bed
leveling and hot-swapping of build plates [Vasquez et al. 2020]. Bed
leveling is achieved by iteratively probing the build plate height
and adjusting the 𝑧-axis coordinates accordingly prior to printing.
However, this approach is unsuitable for non-planar printing, as it
cannot be feasibly performed during a print whenever the target
bed orientation changes. To enable non-planar FFF with a 3Z sys-
tem, Chermain et al. [2025] employed a custom kinematic model.
Nevertheless, the original RatRig rail and bed screw lengths only
allow for a maximum bed tilt angle of 5°. Furthermore, their work
focused on toolpath generation rather than the kinematic mapping
between the toolpath and the corresponding machine coordinates.

Our method does not focus on toolpath generation, but instead
introduces the 3Z kinematic model, which provides efficient closed-
form forward and inverse mappings that do not require iterative
methods. This formulation, along with a minimal hardware modifi-
cation of the RatRig, constitutes a key contribution toward accessi-
ble non-planar printing.

Parallel Manipulator. The RatRig’s bed can be reinterpreted as a
3-legged Prismatic-Prismatic-Spherical (3-PPS) parallel manipula-
tor. In each leg, the active prismatic joint is located at the base and
oriented vertically, while the passive prismatic joint is positioned
horizontally. Although the robotics literature on 3-PPS kinematic
configurations is extensive [Nayak et al. 2018; Yang et al. 2011], to
the best of our knowledge, it does not address FFF systems. More-
over, existing methods typically assume that the spherical joints
form an equilateral triangle and that the horizontal prismatic joints
are directed toward the triangle’s circumcenter. Since these assump-
tions do not match our hardware setup and do not incorporate the

extruder, we derive a custom kinematic model using a geometric
approach.

3 Kinematics Derivation
FFF slicers convert input geometry into a toolpath represented as a
sequence of points. These points are then translated into machine
coordinates to position the machine’s axes. In the case of non-
planar printing with a 3Z machine, each position 𝑝 is associated
with a specific tool orientation 𝑛̂, and each pair (𝑝, 𝑛̂) corresponds
to a unique set of machine coordinates (𝑥,𝑦, 𝑧0, 𝑧1, 𝑧2). Section 3.1
addresses the inverse kinematics problem of converting toolpath
points into machine coordinates, while Section 3.2 discusses the
forward kinematics problem of translating machine coordinates
back into toolpath points, enabling toolpath reconstruction for
inspection.

Notation. We introduce the notation used throughout the paper.
The components of a 3D vector 𝑣 are denoted by (𝑣)𝑥 , (𝑣)𝑦 , and
(𝑣)𝑧 . The projection of a 3D vector 𝑣 onto the 𝑥𝑦-plane is written
as (𝑣)𝑥,𝑦 , while the embedding of a 2D vector 𝑣 into 3D space is
denoted (𝑣)𝑥,𝑦,0. For compactness, rotations and reflections are
represented by reordering and negating vector components. For
example, (𝑣)−𝑦,𝑥 corresponds to a 90° rotation of the 2D vector 𝑣 .
Vectors defined in world-space, bed-space, and plane-space (defined
later) are denoted by □, □̂, and □̃, respectively. We adopt the column
convention for vectors.

Geometric Setup. The geometric setup and the printer’s five axes
are illustrated in Figures 1 and 2. We assume that the 𝑥 and 𝑦 axes
are orthogonal, forming the 𝑥𝑦-plane. Additionally, the three z-
axes are parallel to each other and orthogonal to the 𝑥𝑦-plane. The
machine coordinates (𝑥,𝑦, 𝑧0, 𝑧1, 𝑧2) control the nozzle position 𝑝 ,
as well as the elevation and orientation of the bed. Specifically, the
bed is connected to each z-axis via a ball-on-rail system. Each ball,
firmly affixed to the bed, can rotate freely but is constrained to
linear motion along a fixed direction 𝑑𝑖 on its rail. An important
assumption is that the directions 𝑑𝑖 lie within the 𝑥𝑦-plane. The
positions of the balls, 𝑏0, 𝑏1, and 𝑏2, have vertical components (𝑏0)𝑧 ,
(𝑏1)𝑧 , and (𝑏2)𝑧 , which are linearly correlated with the respective
z-axis coordinates 𝑧0, 𝑧1, and 𝑧2. The bed orientation 𝑛′ is derived
from these heights under the assumption that the bed remains
parallel to the triangle formed by the three balls. In other words,
all balls are equidistant from the top surface of the bed. Another
key assumption is that the bed is level when homed, which can be
ensured by using the machine’s bed-leveling feature prior to each
print. In our geometric configuration, the 𝑧-component of each ball,
(𝑏𝑖 )𝑧 , is the opposite of the corresponding machine coordinate 𝑧𝑖 :

(𝑏𝑖 )𝑧 = −𝑧𝑖 , 𝑖 ∈ {0, 1, 2}. (1)

Note that the proposed kinematics are valid only if the aforemen-
tioned geometric assumptions are satisfied.

World-Space and Bed-Space. The world-space origin is defined as
the position of the first ball, 𝑏0, when the machine axes – 𝑥 ,𝑦, 𝑧0, 𝑧1,
and 𝑧2 – are homed, that is, set to 0. The basis of this space consists
of the directions (𝑒1, 𝑒2, 𝑒3), where 𝑒1 aligns with the x-axis, 𝑒2 with
the y-axis, and 𝑒3 is parallel to the set of triple 𝑧-axes (Fig. 2).
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Figure 2: Machine coordinates: 𝑥 and𝑦move the nozzle, while
𝑧0, 𝑧1, and 𝑧2 control the height of each rail. Each ball position
𝑏𝑖 is constrained to its associated plane (red, blue, and green),
defined by a normal vector 𝑛𝑖 that is orthogonal to both the
rail direction 𝑑𝑖 and the up direction (Eq. 3). The balls form a
triangle (yellow) that is parallel to the bed plane.

The trajectories for the printer – i.e., the nozzle position 𝑝 and
its orientation 𝑛̂ – are always specified in bed-space, as the object to
be fabricated is described within the 3D coordinate system of the
print bed. Vectors in bed-space are denoted by □̂. In the context of
planar printing, where the tool orientation 𝑛̂ aligns with the z-axis,
we assume that the machine coordinates correspond directly to the
position:

𝑥 = (𝑝)𝑥 , 𝑦 = (𝑝)𝑦, 𝑧0 = 𝑧1 = 𝑧2 = (𝑝)𝑧 . (2)
Consequently, the origin of bed-space corresponds to the position of
the nozzle when all machine axes are homed. In this configuration,
the nozzle touches the bed. Since all balls are equidistant from the
top surface of the bed, the ball-to-bed distance is given by | (𝑏𝑖 )𝑧 |.

𝑛𝑛′

𝑛̂
𝑛̂′

Bed-space

World-space

For non-planar printing, the tool orienta-
tion 𝑛̂ is indirectly controlled by tilting the
print bed, which is achieved by independently
adjusting the 𝑧-coordinates. This tilting alters
the alignment between bed-space and world-
space, making a thorough understanding of
this relationship essential for accurately po-
sitioning the nozzle within bed-space. The
target bed normal in world-space, 𝑛′, is de-
rived from the tool orientation in bed-space, 𝑛̂, by reflecting it about
the z-axis; that is, 𝑛′ = (𝑛̂)−𝑥,−𝑦,𝑧 (see inset figure).

Kinematics Parameters. The parameters of the proposed kinemat-
ics are the ball positions 𝑏𝑖 and the rail directions 𝑑𝑖 . Note that, as
the balls are fixed on the bed, their position in bed-space 𝑏𝑖 is con-
stant, while the rail directions 𝑑𝑖 remain constant when expressed
in world-space. Given these parameters, the target position and
orientation (𝑝, 𝑛̂) can be mapped to the 3Z machine coordinates
(𝑥,𝑦, 𝑧0, 𝑧1, 𝑧2) and vice versa.

Balls Constrained to Vertical Planes. From the geometric setup,
we derive the following property, which we will use to derive the
kinematics. The position of each ball is constrained to lie along a
line defined by its rail, and the rail itself is constrained to translate
vertically. In other words, the position of each ball 𝑏𝑖 is restricted
to a plane defined by the rail direction 𝑑𝑖 and the vertical direction
(Fig. 2). The normal of this plane is given by 𝑛𝑖 = 𝑒3 × 𝑑𝑖 , and
the plane distance from the world-space origin is 𝑘𝑖 = −𝑛𝑖 · 𝑏𝑖 ,

where 𝑏𝑖 denotes the world-space position of the balls in the homed
configuration. In this configuration world-space and bed-space are
aligned.We can calculate the ball positions by translating to account
for the different origins of the spaces: 𝑏𝑖 = 𝑏𝑖 − 𝑏0. Formally, the
ball positions 𝑏𝑖 must satisfy (Fig. 2, right):

𝑏𝑖 · 𝑛𝑖 + 𝑘𝑖 = 0, 𝑖 ∈ {0, 1, 2}. (3)

3.1 Inverse kinematics
This section addresses the inverse kinematics problem, which in-
volves finding the set of machine coordinates (𝑥,𝑦, 𝑧0, 𝑧1, 𝑧2) re-
quired to achieve a specific nozzle position and orientation (𝑝, 𝑛̂).
This mapping 𝑓 −1 is essential for converting toolpath waypoints
into machine instructions and may be executed millions of times
during a single print. Consequently, an efficient solution is para-
mount.

The inverse kinematics problem is solved in two steps. First,
the target orientation 𝑛̂ is obtained by adjusting the bed normal 𝑛′
through the 𝑧-coordinates 𝑧0, 𝑧1, 𝑧2 (Section 3.1.1). Then, the target
nozzle position 𝑝 is achieved by finding the correct (𝑥,𝑦) coordi-
nates and translating the bed along the up direction (Section 3.1.2).

3.1.1 Bed Orientation. In this section, the objective is to find the
elevation differences between the rails, 𝑧1−𝑧0 and 𝑧2−𝑧0, that satisfy
the constraints of the geometric setup while correctly positioning
the bed normal 𝑛′ for the tool orientation 𝑛̂. Using Eq. 1, this is
equivalent to solving for the elevation differences of the balls. Three
constraints apply, namely: (1) the ballsmust lie in a plane orthogonal
to 𝑛′; (2) the ball positions are constrained to vertical planes (see
Fig. 2, Eq. 3); and (3) the geometric arrangement of the balls in space
is fixed, as the bed and the connections between the bed and the
balls are rigid.

Plane-Space Definition. To simplify the problem, we reduce its
dimensionality by expressing the last two constraints in a two-
dimensional space, referred to as plane-space, which is defined
such that the first constraint is satisfied by construction. Note that
the plane-space is equivalent to the bed-space xy-plane up to an
unknown translation and in-plane rotation.

Vectors in plane-space are denoted by □̃. To map a vector 𝑣
from world-space to plane-space, we first apply a rotation matrix
𝑀 and then project the result onto the 𝑥𝑦-plane (𝑧 = 0), yielding
𝑣 = (𝑀𝑣)𝑥,𝑦 , where

𝑀 =
[
𝑡 𝑏 𝑛′

]𝑇
, 𝑏 =

𝑛′ × 𝑒1
∥𝑛′ × 𝑒1∥

, 𝑡 =
𝑏 × 𝑛′

∥𝑏 × 𝑛′∥ , (4)

and 𝑒1 is the unit vector along the 𝑥-direction.

Balls Constrained to Lines. Let 𝑏0, 𝑏1, and 𝑏2 denote the ball posi-
tions in plane-space. The in-plane constraints from Eq. 3 are reduced
to line constraints by expressing them in plane-space (Fig. 3, left):

𝑏𝑖 · 𝑛̃𝑖 + 𝑘𝑖 = 0, 𝑛̃𝑖 = (𝑀𝑛𝑖 )𝑥,𝑦, 𝑘𝑖 = 𝑘𝑖 , 𝑖 ∈ {0, 1, 2}. (5)

Fixed Geometric Arrangement of Balls. The balls are rigidly con-
nected to the bed, forming a rigid triangle. In plane-space, the
positions of the second and third balls can be expressed as transla-
tions relative to the first. If the balls were not constrained to lines,
the rigid triangle they form could be positioned and oriented freely
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Figure 3: The constraints in plane-space. Left: The balls 𝑏𝑖
are constrained to lie on lines. Middle: The three balls form
a rigid triangle, whose position and orientation are parame-
terized by 𝑏0 and an angle 𝜃 . Right: The rigid transformation
of the triangle is parameterized by the distance 𝑡 from the
origin to the first ball 𝑏0 and the angle 𝜃 . We solve for those
two parameters to satisfy the constraints.

in the plane. We parameterize the rigid transformation of the trian-
gle by the position of the first ball, 𝑏0, and an angle 𝜃 , which rotates
the other ball positions about the first (Fig. 3, middle):

𝑏𝑖 = 𝑏0 + 𝑅̃𝜃 𝑙𝑖 , 𝑅̃𝜃 =

[
cos(𝜃 ) − sin(𝜃 )
sin(𝜃 ) cos(𝜃 )

]
, 𝑖 ∈ {1, 2} (6)

The vectors between the balls in plane-space are given by 𝑅̃𝜃 𝑙𝑖 ,
where 𝑙𝑖 = (𝑏𝑖 − 𝑏0)𝑥,𝑦 . Note that the projected vectors in bed-
space correspond to the vectors in plane-space, up to an unknown
in-plane rotation 𝑅̃𝜃 .

Solving for Both Constraints. The rigid triangle formed by the
balls must be positioned and oriented such that the ball positions
satisfy the line constraints (Eq. 3). The position of the first ball
in plane-space 𝑏0 depends on the translation component of the
transformation (Eq. 6) and is independent of the rotation component.
Additionally, it is constrained to lie on the line defined by the
rail constraint in Eq. 5, and its position can be expressed as a ray
𝑜 + 𝑡𝑑0, where 𝑡 is a scalar parameter defining its position. Since the
position of the first ball 𝑏0 in the homed configuration was chosen
as the origin of world-space, and the plane of the 2D problem
passes through this point, the origin of plane-space lies on the rail
constraint associated with the first ball. Therefore, the ray origin 𝑜
can be omitted:

𝑏0 = 𝑡𝑑0 . (7)

By substituting Eq. 7 into Eq. 6, the position and orientation of the
rigid triangle are parameterized by two scalars: 𝑡 and 𝜃 . We can
then solve for these two scalars to ensure that all balls lie on their
respective constraint lines (Eq. 5, Fig. 3). The constraint on the first
ball, 𝑏0, is satisfied by construction (Eq. 7), while the constraints on
the other two balls yield a closed-form solution for 𝑡 and 𝜃 .

First, the constraint on 𝑏1 is solved for 𝑡 :

𝑡 = −
(𝑙1 · 𝑛̃1) cos(𝜃 ) + ((𝑙1)−𝑦,𝑥 · 𝑛̃1) sin(𝜃 ) + 𝑘̃1

𝑑0 · 𝑛̃1
(8)

This expression is then substituted into the constraint on 𝑏2 to
obtain the equation:

𝛼 cos(𝜃 ) + 𝛽 sin(𝜃 ) + 𝛾 = 0

𝛼 = (𝑑0 · 𝑛̃1) (𝑙2 · 𝑛̃2) − (𝑑0 · 𝑛̃2) (𝑙1 · 𝑛̃1)

𝛽 = (𝑑0 · 𝑛̃1) ((𝑙2)−𝑦,𝑥 · 𝑛̃2) − (𝑑0 · 𝑛̃2) ((𝑙1)−𝑦,𝑥 · 𝑛̃1)

𝛾 = 𝑑0 · (𝑘̃2𝑛̃1 − 𝑘̃1𝑛̃2)

(9)

This leads to two possible solutions, as
shown in the inset figure. The correct so-
lution is the one that introduces the least
rotation, that is, the one with the smallest
absolute value of 𝜃 . To that end, the tan-
gent half-angle substitution 𝜂 = tan(𝜃/2)
is applied, resulting in the second-degree equation:

(𝛾 − 𝛼)𝜂2 + 2𝛽𝜂 + 𝛼 + 𝛾 = 0, (10)

which can be solved in closed-form for 𝜃 with the smallest absolute
value as:

𝜃 =


2 tan−1

(
𝛼+𝛾

−𝛽−sign(𝛽 )
√
𝛼2+𝛽2−𝛾2

)
, 𝛼 + 𝛾 ≠ 0

0, 𝛼 + 𝛾 = 0
(11)

Once 𝜃 is known, it can be substituted into Eq. 8 to obtain 𝑡 ,
which can then be used to compute the position of the first ball 𝑏0
using Eq. 7. The positions of the other balls, 𝑏1 and 𝑏2, can then be
solved via Eq. 6.

The world-space positions of the balls 𝑏𝑖 can now be computed
by inverting the initial rotation𝑀 . However, since the position of
the plane with 𝑛′ as the normal was chosen arbitrarily, the ball
positions are known up to a vertical translation 𝐶 .

𝑏𝑖 =𝑀𝑇 (𝑏𝑖 )𝑥,𝑦,0 +𝐶, 𝑖 ∈ {0, 1, 2} (12)

Since the translation 𝐶 is the same for each ball, the difference
in z-axis coordinates, 𝑧1 − 𝑧0 and 𝑧2 − 𝑧0, is fully defined for a given
target orientation 𝑛̂.

3.1.2 Nozzle position. The second sub-problem aims to determine
the machine coordinates to correctly place the nozzle in bed-space.
Let ¥𝑝 be the world-space nozzle position when the machine is
positioned for planar printing at the target position 𝑝 (Fig. 4, left).
The bed is first tilted by moving 𝑧1 and 𝑧2 using the balls’ relative
positions (𝑏1 − 𝑏0)𝑧 and (𝑏2 − 𝑏0)𝑧 . This operation ensures the
correct bed normal 𝑛′, but the introduced roto-translation of the
bed results in the wrong nozzle position in bed-space. This roto-
translation moves the ¥𝑝 into ¥𝑝′ (Fig. 4, center). The vector ¥𝑝′ − ¥𝑝
can be used to update the machine coordinates to correct the nozzle
position in bed-space. Its 𝑥𝑦-components are used to move the
nozzle, whereas its 𝑧-component is used to move the three 𝑧-axes
by the same distance (Fig. 4, right).

Bed Roto-translation. By fixing 𝑧0 and adjusting 𝑧1 and 𝑧2 ac-
cording to their offsets from 𝑧0, the bed rotates about the first ball,
and the latter translates along its rail. The aforementioned rotation
about the first ball ¥𝑏0 is the combination of the in-plane rotation 𝑅𝜃
followed by the rotation to obtain the correct normal𝑀𝑇 . As the
oriented bed now only moves horizontally, it is convenient to ex-
press this horizontal translation in world-space, after the rotations
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¥𝑝
¥𝑝′

¥𝑝

¥𝑏0

Figure 4: Left: The nozzle position derivation starts by posi-
tioning the tool at the target position 𝑝 with a planar con-
figuration (Eq. 2). In this setting, let ¥𝑝 and ¥𝑏0 be the tool
and first ball positions in world-space. Center: To achieve
the target tool orientation 𝑛̂, the second and third ball ele-
vation are modified using Eq. 12. Consequently, the bed’s
roto-translation moves the point ¥𝑝 to ¥𝑝′ (Eq. 13). Right: The
difference between ¥𝑝′ and ¥𝑝 is used to correctly position the
nozzle in bed-space. The horizontal component of the dif-
ference vector is used to move the nozzle (red vector), while
the vertical component is used to adjust the bed height (blue
vectors).

have been applied, as (𝑏0)𝑥,𝑦,0. By applying this roto-translation to
¥𝑝 , we obtain ¥𝑝′:

¥𝑝′ =𝑀𝑇𝑅𝜃 ( ¥𝑝 − ¥𝑏0) + ¥𝑏0 + (𝑏0)𝑥,𝑦,0

𝑅𝜃 =


cos(𝜃 ) − sin(𝜃 ) 0
sin(𝜃 ) cos(𝜃 ) 0

0 0 1


(13)

Machine Axes Values. The values ¥𝑝 and ¥𝑏0 are not known, so we
seek to reformulate the problem in terms of 𝑝 and 𝑏0. To correct
the machine axes, we are only interested in the difference between
¥𝑝′ − ¥𝑝 , so we can translate the space for our convenience. Let
this translation be encoded by the vector 𝑔, we define 𝑔 such that
¥𝑝 = 𝑝 + 𝑔 and we define 𝑝′ = ¥𝑝′ − 𝑔. Then, the following hold:
¥𝑝′ − ¥𝑝 = 𝑝′ − 𝑝 . Additionally, given that in the planar configuration
bed-space is aligned to world-space, we have that ¥𝑏0 = 𝑏0 + 𝑔.
We can obtain 𝑝′ from Eq. 13 by substituting the previous terms.
Note that 𝑔 cancels out and that the values on the right side of the
equation are known:

𝑝′ =𝑀𝑇𝑅𝜃 (𝑝 − 𝑏0) + 𝑏0 + (𝑏0)𝑥,𝑦,0 (14)
The machine axes must now be moved by their difference 𝑝′ − 𝑝 ,

where the 𝑧-component of this difference must be applied to the
three z-axes. For example, before the bed is tilted, the 𝑥-coordinate
of the machine was (𝑝)𝑥 , as per Eq. 2. By adding the aforementioned
difference, we obtain the correct value (𝑝′)𝑥 . Repeating this process
for all axes produces the machine coordinates:

𝑥 = (𝑝′)𝑥 , 𝑦 = (𝑝′)𝑦, 𝑧0 = (𝑝′)𝑧
𝑧1 = 𝑧0 + (𝑏0 − 𝑏1)𝑧, 𝑧2 = 𝑧0 + (𝑏0 − 𝑏2)𝑧

(15)

3.2 Forward kinematics
The forward kinematics problem is concerned with the mapping
𝑓 from machine coordinates (𝑥 , 𝑦, 𝑧0, 𝑧1, 𝑧2) to the corresponding
point in bed-space (𝑝, 𝑛̂). The sliding of the balls along their rails
makes the bed normal non-trivial to compute. To derive the kine-
matics, we solve for the bed roto-translation that satisfies geometric

𝑏1
𝑅1

𝑧 = −𝑧2

𝑧 = −𝑧1𝑧 = −𝑧0

𝑅𝜃 ′

𝑡 ′𝑑0

𝑏2

𝑅2 𝑅1𝑏2

𝑅1𝑏1

𝑅1𝑏1

𝑅2𝑅1𝑏2

𝑅2𝑅1𝑏1

𝑅2𝑅1𝑏2

(𝑙 ′1)𝑥,𝑦,0
(𝑙 ′2)𝑥,𝑦,0

𝑎1

𝑎2

Figure 5: Illustration of the steps in the forward kinematics
derivation. The given machine coordinates (𝑧0, 𝑧1, 𝑧2) con-
strain the balls to three horizontal planes (top left). The
derivation begins with the planar configuration (top right),
and the goal is to determine a bed roto-translation that satis-
fies the geometric constraints. First, we solve for a rotation
𝑅1 that corrects the relative height between the red and blue
balls (top right). Next, we compute a second rotation 𝑅2 that
adjusts the relative height between the red and green balls
(bottom left). In the final step (bottom right), we solve for a
horizontal rotation 𝑅𝜃 ′ and a translation 𝑡 ′𝑑0 in a 2D domain
(gray plane) to align the balls with the rails (dashed lines).

constraints. The position of each ball 𝑏𝑖 is constrained to a horizon-
tal plane 𝑧 = −𝑧𝑖 (Eq. 1, Fig. 5, top left), and to a vertical plane (Eq. 3).
The bed roto-translation is solved in two sub-steps. First, we solve
for a rotation 𝑅2𝑅1 that satisfies the horizontal plane constraints
(Section 3.2.1, Fig. 5, bottom left). Then, we solve for a rotation 𝑅𝜃 ′

about the world vertical axis 𝑒3, and for the bed translation that
satisfies the vertical plane constraints (Section 3.2.2, Fig. 5, bottom
right). By inverting the bed roto-translation in Eq. 14, the bed-space
nozzle position 𝑝 and orientation 𝑛̂ can be recovered (Section 3.2.3).

3.2.1 Placement of Balls on Horizontal Planes. The rotation that
satisfies the constraints in Eq. 1 up to a vertical translation depends
on the relative positions of the second and third balls with respect to
the first. As 𝑏𝑖 denotes the world-space positions of the balls in the
homed configuration, and the origin of world-space is 𝑏0, applying
this rotation to 𝑏1 and 𝑏2 results in vectors that correspond to the
relative positions of the balls up to a rotation about the vertical axis.
This rotation can be expressed as two consecutive sub-rotations, 𝑅1
and 𝑅2, which respectively satisfy the first and second horizontal
plane constraints defined in Eq. 1. The rotation 𝑅2 fulfills the second
constraint without violating the first (Fig. 5):

(𝑅1𝑏1)𝑧 = 𝑧0 − 𝑧1 (16)

(𝑅2𝑅1𝑏𝑖 )𝑧 = 𝑧0 − 𝑧𝑖 𝑖 ∈ {1, 2}. (17)
To solve for 𝑅1 and 𝑅2, we perform a dimensionality reduction

by fixing the rotation axes and solving for the rotation angles. The
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rotation 𝑅1 is defined by an angle 𝜃1 and an axis 𝑎1. The axis 𝑎1 is
chosen such that it lies in the 𝑥𝑦-plane, passes through the point
𝑏0, and is orthogonal to the vector 𝑏1 (Fig. 5, top right). Positioning
𝑎1 in this way ensures that such an angle 𝜃1 exists. Similarly, the
rotation 𝑅2 is defined by an angle 𝜃2 and an axis 𝑎2. The axis 𝑎2 is
given by the vector 𝑅1𝑏1. This ensures that the first ball constraint
is satisfied for any value of 𝜃2 (Fig. 5, bottom left).

Solving for the Angles. We first solve for 𝜃1 using Eq. 16, then
for 𝜃2 using Eq. 17 (𝑖 = 2). Both cases are equivalent to finding a
rotation angle ¥𝜃 such that rotating a vector ¥𝑣 about an axis ¥𝑎 by ¥𝜃
results in a vector whose 𝑧-component matches a target value ¥𝑧.
Using Rodrigues’ rotation formula, this can be expressed as:

( ¥𝑣 cos( ¥𝜃 ) + ( ¥𝑎 × ¥𝑣) sin( ¥𝜃 ) + ¥𝑎( ¥𝑎 · ¥𝑣) (1 − cos( ¥𝜃 )))𝑧 = ¥𝑧, (18)

that can be rewritten as:

¥𝛼 cos( ¥𝜃 ) + ¥𝛽 sin( ¥𝜃 ) + ¥𝛾 = 0
¥𝛼 = ( ¥𝑣)𝑧 − ( ¥𝑎)𝑧 ( ¥𝑣 · 𝑎), ¥𝛽 = ( ¥𝑎 × ¥𝑣)𝑧, ¥𝛾 = ( ¥𝑎)𝑧 ( ¥𝑣 · ¥𝑎) − ¥𝑧

(19)

The correct solution corresponds to the angle ¥𝜃 with the smallest
absolute value, which can be solved via Eq. 11.

3.2.2 Placement of Balls on Vertical Planes. Using the rotations 𝑅1
and 𝑅2, we can compute the vectors between the balls up to a rota-
tion about the vertical axis. To obtain the bed roto-translation, these
vectors, as well as the machine constraints in Eq. 3, are projected
onto the horizontal plane 𝑧 = 0 (Fig. 5). This results in a 2D problem
with the same structure as the one in the inverse kinematics. The
system to solve for the scalars 𝑡 ′ and 𝜃 ′ is:

(𝑏0)𝑥,𝑦 = 𝑡 ′ (𝑑0)𝑥,𝑦, (𝑏𝑖 )𝑥,𝑦 = (𝑏0)𝑥,𝑦 + 𝑅̃𝜃 ′𝑙
′
𝑖 , 𝑖 ∈ {1, 2},

𝑙 ′𝑖 = (𝑅2𝑅1𝑏𝑖 )𝑥,𝑦
(20)

where 𝑅̃𝜃 ′ is defined by substituting 𝜃 with 𝜃 ′ in Eq. 6.
The system is solved by substitution; first solving for the trans-

lation 𝑡 ′ as in Eq. 8:

𝑡 ′ =
(𝑙 ′1 · (𝑛1)𝑥,𝑦) cos(𝜃 ′) + ((𝑙 ′1)−𝑦,𝑥 · (𝑛1)𝑥,𝑦) sin(𝜃 ′) + 𝑘1

−𝑑0 · 𝑛1
, (21)

and then for 𝜃 ′, using Eq. 11, as in Eq. 9:

𝛼 ′ cos(𝜃 ′) + 𝛽 ′ sin(𝜃 ′) + 𝛾 ′ = 0
𝛼 ′ = (𝑑0 · 𝑛1) (𝑙 ′2 · (𝑛2)𝑥,𝑦) − (𝑑0 · 𝑛2) (𝑙 ′1 · (𝑛1)𝑥,𝑦) (22)

𝛽 ′ = (𝑑0 · 𝑛1) ((𝑙 ′2)−𝑦,𝑥 · (𝑛2)𝑥,𝑦) − (𝑑0 · 𝑛2) ((𝑙 ′1)−𝑦,𝑥 · (𝑛1)𝑥,𝑦)
𝛾 ′ = 𝑑0 · (𝑘2𝑛1 − 𝑘1𝑛2)

3.2.3 Solving for the Nozzle Position and Orientation. The overall
bed rotation 𝑅𝜃 ′𝑅2𝑅1, where 𝑅𝜃 ′ is defined by substituting 𝜃 with 𝜃 ′
in Eq. 13, is equivalent to the rotation𝑀𝑇𝑅𝜃 from Eq. 14. The nozzle
position in bed-space 𝑝 is obtained by inverting Eq. 15, and the bed
normal 𝑛′ is obtained by applying the overall bed rotation to the
unitary vector in the 𝑧-direction 𝑒3. Finally, the tool orientation 𝑛̂

is obtained by mirroring the bed normal 𝑛′ about 𝑒3:

𝑝 = 𝑅𝑇1 𝑅
𝑇
2 𝑅

𝑇
𝜃 ′ ((𝑥 − (𝑏0)𝑥 , 𝑦 − (𝑏0)𝑦, 𝑧0)𝑇 − 𝑏0) + 𝑏0

𝑛′ = 𝑅𝜃 ′𝑅2𝑅1𝑒3, 𝑛̂ = (𝑛′)−𝑥,−𝑦,𝑧
(23)

4 Results
We validate the kinematics introduced previously through both
virtual and physical experiments. To that end, we implemented
the forward (Section 3.2) and inverse kinematics (Section 3.1) in
Python. For the physical validation, we performed non-planar print-
ing in Section 4.6 using a RatRig V-Core 3.1 equipped with RepRap
firmware version 3.6.0. The machine’s design and build volume
are described in Sections 4.1 and 4.2, respectively. We discuss the
numerical stability of the kinematics by checking the property
(𝑝, 𝑛̂) = (𝑓 ◦ 𝑓 −1) (𝑝, 𝑛̂) in Section 4.3. The tolerance analysis and
firmware point interpolation are discussed in Sections 4.4 and 4.5,
respectively. A comparison with 3-axis printing is presented in
Section 4.7. The hardware limitations are analyzed in Section 4.8.
The Python implementation of the kinematics is provided in the
supplemental material.

4.1 Machine Design
The RatRig hardware was used [RatRig 2025], with modifications
to the z-carriages and the bed standoffs, which were extended to
increase the maximum achievable tilt angle. A commercially avail-
able longer nozzle–the Nonplanar Volcano brass 0.6 mm–was also
installed to avoid collisions [Nonplanar.xyz 2025]. The relevant
machine parameters (mm) are as follows: the ball positions in bed-
space are:𝑏0 = (−4.07,−12.16,−45.7)𝑇 ,𝑏1 = (304.93,−12.16,−45.7)𝑇 ,
and 𝑏2 = (150.43, 296.84,−45.7)𝑇 ; The slot directions 𝑑0, 𝑑1, and
𝑑2 are oriented at 29.89°, 150.11°, and −90°, respectively, from the
x-axis. The planar build volume is a box of 300 × 293 × 205 mm.

The original z-carriages house a ball-on-rail system allowing
for 10 mm of travel, with the balls centered in their respective
rails when the bed is horizontal. Since the achievable tilt angle is
limited by the length of the rails, the z-carriages were modified to
accommodate longer rails. The relation between tilt angle and rail
lengthwas investigated by computing the signed distance from each
ball to its position along its rail in the horizontal configuration and
recording the maximum and minimum values as the bed precesses
about the vertical axis. The resulting ball displacements, shown in
Fig. 6, reveal that the balls tend to be displaced more prominently
in the inward direction, towards the center of the bed. In order to
achieve amaximum tilt angle of 30°, custom carriages were designed
with the rails extended asymmetrically to allow for 69mm of inward
travel and 19 mm of outward travel from the planar position. A
side effect of the elongated rails is that the bottom of the bed may
collide with the rails at higher tilt angles. It was therefore necessary
to increase the distance measured from the center of the balls to
the top of the bed | (𝑏𝑖 )𝑧 | from 19.3 to 45.7 mm by lengthening the
standoffs. The required distance is shown as a function of the tilt
angle in Fig. 6.

4.2 Build Volume
A major limitation of printer designs that achieve non-planar print-
ing by tilting the bed is the restricted build volume relative to their
overall footprint. Here, the 3Z design offers a key advantage: its
build volume is inherently equivalent to that of a standard CoreXY
printer and only reduces dynamically, depending on the maximum
tilt angle used during a print. This means large planar prints can
be accommodated without any retooling.
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Figure 6: Plots of the required rail lengths (left) and min-
imum bed-ball distance | (𝑏𝑖 )𝑧 | (right) as a function of the
maximum tilt angle. Note that the minimum rail length of
8 mm corresponds to the radius of the balls.

𝑥

𝑧
𝑦

Figure 7: Left: Bed-space build volume for tilt angles of 0°
(blue), 10°, 20°, and 30° (red). Right: Object with an additional
raft to fit inside the build volume.

Fig. 7 illustrates the effective bounding box within bed-space
for tilt angles ranging from 0° to 30°. As expected, the standard
rectangular prism is preserved when the tilt angle is 0°. However,
increasing the tilt angle transforms the volume into an asymmetrical
polyhedron. The slanted faces arise either because the nozzle’s
reachable area, as well as the rails positions, are constrained by the
limits of the machine axes, or due to potential collision between
the bed and the overhanging XY gantry. Moreover, the shape of the
base highlights a critical constraint: printing at high tilt angles far
from the bed’s center is not feasible when the nozzle is near the
bed surface, as this would lead to a collision. This limitation can
be addressed by either increasing the clearance between the bed
and the gantry, reducing the size of the bed itself, or printing a raft
to offset the first non-planar layer of the printed model from the
bed (Fig. 7, right). The use of a longer nozzle further increases the
clearance between the bed and the gantry.

4.3 Numerical Stability
To validate the numerical stability of our kinematics implementa-
tion, we check the property (𝑝, 𝑛̂) = (𝑓 ◦ 𝑓 −1) (𝑝, 𝑛̂). We define the
possible tool positions as the points within the planar build volume
(Sec. 4.1) and the possible orientations as all the orientations up
to 30°. Considering the possible tool positions 𝑝 and orientations
𝑛̂, we obtain a worst-case error of 3.2 × 10−13 mm for the position
and 1.5° × 10−5 for the orientation, using double precision floating
points.

Figure 8:Worst-case error induced by an axismotor tolerance
of ± 0.05 mm as a function of tool orientation (up to 30°) in
slope-space. Left: position error (mm). Right: tool orientation
error (° × 10). The circle represents the set of orientations at
30°.

Table 1: Error statistics, as defined in Figure 8, for various
axis motor tolerance values.

Tolerance Position (mm) Orientation (° × 10)
Min Max Average Min Max Average

± 0.01 mm 0.04 0.05 0.05 0.04 0.05 0.04
± 0.05 mm 0.22 0.26 0.23 0.21 0.24 0.22
± 0.1 mm 0.44 0.51 0.47 0.41 0.48 0.44

4.4 Tolerance Analysis
Printing accuracy is affected by the precision of the axis motors and
the tolerances of the machine components. To evaluate the impact
of motor position accuracy, each axis position is perturbed by ±0.05
mm, and the resulting worst-case nozzle position and orientation
errors are plotted as a function of the nozzle orientation in slope-
space (Fig. 8). The slope-space position of a nozzle orientation 𝑛̂

is defined as: (−(𝑛̂)𝑥/(𝑛̂)𝑧,−(𝑛̂)𝑦/(𝑛̂)𝑧)𝑇 . The worst-case error is
defined as the maximum error over the possible nozzle positions
and all combinations of individually perturbed axes. Error statistics
for various tolerance values are provided in Table 1.

In addition to motor precision, printing accuracy is also influ-
enced by the precision of the machine components. The error in-
duced by deviations from the nominal machine dimensions involved
in the kinematics solver (𝑏0, 𝑏1, 𝑏2, 𝑑0, 𝑑1, 𝑑2) is evaluated as follows.
Given a target nozzle position and orientation, the machine coor-
dinates are computed based on the nominal machine parameters.
The true position and orientation are then computed via forward
kinematics, with a deliberate tolerance error introduced in each of
the machine parameters. In Figure 9, the worst-case error, defined
as the maximum error over the possible nozzle positions and all
combinations of individually perturbed machine dimensions, is
plotted with respect to the tool orientation in slope-space. Statistics
for various tolerance values are provided in Table 2. These results
reveal that the error is positively correlated with the tilt angle.

4.5 Firmware Point Interpolation
In traditional FFF printing, toolpaths are transmitted as a list of
cartesian coordinates to the printer controller. Themachine’s firmware
is responsible for calculating the corresponding motor positions
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Figure 9: Worst-case error induced by a tolerance of
± 0.05 mm for the kinematics parameters 𝑏0, 𝑏1, and 𝑏2, and a
tolerance of ± 0.05° for the angular parameters 𝑑0, 𝑑1, and 𝑑2,
shown as a function of tool orientation (up to 30°) in slope-
space. Left: position error (mm). Right: tool orientation error
(° × 10).

Table 2: Statistics on the errors, as defined in Figure 9, for
different tolerances.

Tolerance Position (mm) Orientation (° × 10)
Min Max Average Min Max Average

± 0.01 mm/° 0.00 0.03 0.02 0.00 0.04 0.02
± 0.05 mm/° 0.00 0.17 0.10 0.00 0.19 0.11
± 0.1 mm/° 0.00 0.34 0.20 0.00 0.37 0.22

and interpolating the shortest path between each point, adjusting
the machine’s axes accordingly. However, firmware development
was beyond the scope of this study. Therefore, we explicitly pro-
vided machine coordinates (𝑥,𝑦, 𝑧0, 𝑧1, 𝑧2) in the G-code instead of
relying on onboard interpolation from cartesian coordinates.

Since the controller automatically applies component-wise linear
interpolation of the machine coordinates as it moves from one
position to the next, some deviation from the intended trajectory
is introduced, as illustrated in Fig. 10. We mitigate this effect by
providing a fine tesselation of the toolpath in the G-code.

To quantify the error induced by component-wise interpolation,
we consider the deviation between this interpolation and the cor-
rect one, i.e., linear interpolation of the positions and spherical
interpolation of the tool orientations (Fig. 10, left, green trajectory).
To compute this error, we finely tessellate the two trajectories and
compute the maximum distance between corresponding points, i.e.,
points generated by the same interpolant. The worst-case error,
over the possible nozzle positions and orientations, is plotted as a
function of the distance between endpoints in Figure 11. The results
show that although both the cartesian distance and the polar angle
affect the error, the latter plays a more significant role. To minimize
this issue, a finely tessellated toolpath, with at most 1 mm and 1°
between points, corresponding to a worst-case error of 0.05 mm
and 0.01°, should be used. Finer tessellation may result in heavier
G-code, which requires more memory and greater computational
power for the firmware to process. Moreover, it can lead to less
smooth machine motions, as toolpaths that appear smooth in terms
of (𝑝, 𝑛̂) may not be equally smooth in machine space (Fig. 10,
right).

𝑥

𝑧𝑦

Figure 10: Left: Linear interpolation in machine space (blue
trajectory) between two end points (red points), separated by
30 mm and 60°, compared to the desired trajectory obtained
by separately interpolating the target position and tool ori-
entation (green trajectory). Note how both the trajectory and
point spacing, i.e. speed, are affected. Right: The required
machine coordinates to obtain the desired trajectory. In this
particular instance 𝑦 requires a non-linear interpolation.

Figure 11: Worst-case error induced by component-wise lin-
ear interpolation as a function of cartesian and polar dis-
placement. Left: position error (mm). Right: tool orientation
error (° × 10). We recommend tessellating toolpath positions
and orientations with a maximum spacing of 1 mm and 1°,
respectively, to avoid machine interpolation errors.

4.6 Physical Validation
We validate the kinematics by printing various models (Fig. 12).
First, we convert a toolpath, i.e., a sequence of tool positions and
orientations (𝑝, 𝑛̂), into a corresponding sequence of machine coor-
dinates (𝑥,𝑦, 𝑧0, 𝑧1, 𝑧2). This sequence is then encoded into G-code.
The machine firmware reads the G-code and actuates the motors to
print the object. Notably, RepRap firmware can be configured to in-
terpret 5-axis G-code without any modifications. The supplemental
video shows the printer in action.

Procedural Models. Two toolpaths were generated procedurally.
The Horn is composed of multiple layers tilted up to 30°. Each layer
consists of a circle, and at each transition between layers, the ra-
dius is reduced and the machine orientation is adjusted, producing
a twisted horn shape. This model shows no visible defects, high-
lighting the machine’s capability to print across a wide range of
orientations. The Bump tests the machine’s ability to follow ac-
curate trajectories while tilting up to 23°. Note that, despite its
simple appearance, this model requires precise and complex nozzle
movements to compensate for the tilting bed. The printed result



SCF ’25, November 20–21, 2025, Cambridge, MA, USA Giovanni Cocco, Eric Garner, Vincent Belle, Cédric Zanni, and Xavier Chermain

Figure 12: The printed objects, from top to bottom:Car,Ankle,
Bump, Horn, and Yin-yang, with a close-up of the same ob-
jects shown on the right. The deposition width is 0.9 mm, and
the layer height is approximately 0.45 mm. For procedural
models, the layer height is dynamically adjusted to account
for the compression and decompression effects caused by the
curved layers.

demonstrates good quality, though it is slightly affected by minor
artifacts due to mechanical backlash of the bed.

Mesh Models. Additional toolpaths were generated from STL
meshes using Atomizer [Chermain et al. 2025]. To this end, we
integrated the kinematic model into the Atomizer toolpath genera-
tor, targeting the printer described in Section 4.1. The Ankle tests
the machine’s behavior with an object featuring layer compression
and tilts up to 22°. The Car is a model with different curvature
directions and tilts up to 26°. For this model, a raft was required
to reach the build volume (Fig. 7). Both the Ankle and car models
show no significant deviations from the toolpaths. Exploiting the
filament deposition direction allows for the creation of controlled

3-
D
oF
s

5-
D
oF
s

Figure 13: Comparison between 3-DoFs (top) and 5-DoFs (bot-
tom). Printing with 3-DoFs results in noticeable gouging on
the top of the Bump, which is avoided when using 5-DoFs
(left). At higher tilting angles, the 3-DoFs configuration fails
to print the Horn, whereas the 5-DoFs setup completes it suc-
cessfully (center). Nevertheless, the machine demonstrates
higher spatial accuracy when operating with only 3-DoFs,
and the Ankle shows improved wall quality in this mode
(right).

anisotropic appearances [Chermain et al. 2023]. However, with pla-
nar printers, this feature is limited to horizontal surfaces. The 3Z
configuration lifts this limitation, enabling the fabrication of the
Yin-yang model with tilts up to 14°.

4.7 3-DoFs Comparison
To evaluate the advantages of 5-axis printing, we compared prints
produced by tilting the bed – i.e., 5-DoFs – with those generated
using a toolpath that follows the same sequence of positions 𝑝 but
with fixed tool orientations 𝑛̂ = 𝑒3 – i.e., 3-DoFs (Fig. 13). Using
3-DoFs leads to severe gouging that not only significantly grooves
the object’s surface, but also causes the nozzle to become stuck in
the print. This often results in the object detaching from the build
platform, requiring multiple attempts to successfully complete the
print. Furthermore, highly tilted models, such as the Horn, could
only be successfully printed using 5-DoFs. For Mesh models, the
toolpath generator produces excessive orientation changes (see
supplemental video). However, when using 5-DoFs, this behavior
– combined with the increased error introduced by the added me-
chanical complexity – can lead to reduced wall quality compared to
prints produced with 3-DoFs. This issue could be mitigated either
by increasing the manufacturing tolerances of the machine or by
using a toolpath generator that better accounts for the machine’s
limitations.

4.8 Hardware Limitations
In this section, we discuss the limitations of the machine when used
for non-planar printing. Understanding these limitations may be
crucial for further refining the hardware for non-planar applica-
tions.
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𝑥

𝑧

𝑦

𝑧

𝑥

𝑧

Figure 14: Mechanical backlash can introduce small geomet-
ric deviations from the prescribed toolpath. Left: TheBump is
oriented toward the x-axis. In the inset, odd and even layers
are offset inward and outward, respectively, creating mis-
alignments. Center: The Bump is oriented toward the y-axis.
The wall facing the viewer now has aligned layers, but the
left and right walls are no longer straight. Right: The Bump
is again oriented toward the x-axis, as in the left case, but
the layer height is reduced to 0.2 mm instead of 0.4 mm. Re-
ducing the layer height helps mitigate layer misalignment.

Z-Axes Speed. In the context of planar printing, the maximum
speed of the z-axes is generally unimportant and, therefore, rel-
atively low. For example, our Ratrig z-axes are limited to 1900
mm/min. However, in non-planar printing, this limits the maxi-
mum tilting speed of the bed. As a result, the deposition speed
must be reduced in regions with high curvature or sharp corners
to accommodate the slower bed rotation. Maintaining print quality
under varying deposition speeds requires precise control to account
for the nonlinear effects of pressure within the nozzle. In planar
printing, this is typically handled using a technique called pressure
advance. However, this technique is not available for non-planar
printing and is challenging to implement with long nozzles, making
it an interesting direction for future work.

Mechanical Backlash. The motion transfer between the z-axes
and the bed is slightly affected by mechanical backlash. This can
be problematic, as it may prevent the machine from accurately
depositing material directly on top of the previous layer, causing
misalignment (Fig. 14). Note that the error depends on the direction
in which the bed is tilting, suggesting that static kinematic issues
are unlikely to be the cause.

Rails-ball Connection. The balls are held on the rails by gravity
alone. If the friction between the rails and the balls exceeds the
force of gravity, the bed may lift instead of sliding smoothly along
the rails. The bed lift may cause it to fall off the rails, leading to
print failure. This issue can be avoided by greasing the rails. While
lubrication proved to be an effective solution in our experiments, it
may be beneficial to implement sensors to detect this type of failure
and automatically halt the print. Since each rail consists of two
metal rods and the ball makes contact with both (Fig.1), a simple
sensor could be created by electrifying the rods: if the ball falls off,
the circuit would open, signaling a failure.

5 Conclusion and Future Work
For its low-cost and simplicity compared to alternative technologies,
the 3Z configuration presents a compelling option for non-planar
FFF applications up to around 30°. By reducing the entry barrier to
non-planar FFF, the 3Z configuration has the potential to enable a

wider community of makers, educators, and researchers to explore,
innovate, and contribute to the expanding field of advanced additive
manufacturing. The closed-form solutions presented in this work
could be implemented in the controller firmware to ensure accu-
rate interpolation. Nonetheless, several important aspects should
be considered. Among others, objects to be printed should be au-
tomatically positioned to accommodate the limited build volume,
and an automated method should be developed to mitigate inac-
curacies caused by deviations in machine component dimensions.
Additionally, pressure advance, input shaping, and other advanced
techniques should also be adapted for the 3Z configuration to im-
prove print quality. In particular, a more advanced algorithm is
needed to coordinate extrusion flow, surface curvature, and bed-tilt
to improve surface quality. Furthermore, we used a commercially
available printer with only minor modifications. Optimizing the
machine’s dimensions and design specifically for non-planar appli-
cations represents an interesting area for further exploration. The
generation of non-planar toolpaths remains an active and evolving
area of research. Although numerous solutions have been proposed
within the research community [Chermain et al. 2025; Liu et al.
2024; Zhang et al. 2022], a fully developed software package that
matches the capabilities of existing planar slicers is still lacking and
would require substantial engineering effort to realize.
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